• Title/Summary/Keyword: Under-Frame

Search Result 1,689, Processing Time 0.031 seconds

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

Evaluation of Dynamic Behavior of moment resisting frame under probabilistic ground motions (확률론적 지진하중에 의한 모멘트 골조의 동적 거동평가)

  • 권오성;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.565-570
    • /
    • 2001
  • Base shear and roof drift relation was acquired from experiment of 3 story ordinary moment resisting frame which was designed using gravity loads. To evaluate the dynamic behavior of the frame, analytical model was generated from experimental result. Dynamic analysis was performed using the analytical model subjected to earthquake ground motions with 500, 1000, and 2400 years of return period. And capacity spectrum method was adopted to find the performance points of the frame. Both dynamic analysis and CSM showed that the performance of the frame meet the life safety objectives suggested by FEMA 273 and ATC 40.

  • PDF

MICROSCOPIC INVESTIGATION OF DRY FABRICS: Picture Frame Test (건직물 복합재료의 미세거동 관찰: 사진틀 실험)

  • 장승환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.211-214
    • /
    • 2003
  • This paper presents the microscopic observation results from the picture frame test using five-harness satin weave fabric composite. Aligned and misaligned specimens are observed to verify the exact tow deformation pattern such as tow interval and change in tow amplitude. To observe the micro-deformation of the fabric structure, appropriate specimens from picture frame test are sectioned and observed under the microscope. From the observation results, it is found that a picture frame test with a misaligned fibre orientation angle shows large differences in deformation between tensile and compressive tow directions.

  • PDF

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

A Modified Equivalent Frame Model for Plat Plate Slabs Under Lateral Loads (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Han Sang-Whan;Park Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.419-426
    • /
    • 2005
  • This study is to propose a modified equivalent frame model for flat plate slabs under lateral loads. ACI 318 (2002) allows equivalent frame methods to conduct two-way slab system analysis subjected to gravity loads as well as lateral loads. Since the equivalent frame method in the ACI 318 (2002) has been developed base on the behavior of two-way system for gravity loads, and nay not predict the behavior of flat plate slabs under lateral loads with good precision. This study develops a modified equivalent frame model which can give more precise answer for flat plate slabs under lateral loads. This model reflects the actual force transfer mechanism among the components of flat plate slab system, which are slabs, columns and torsional members, more accurately under lateral loads than existing equivalent frame models. The accuracy of this model is verified by comparing the analysis results using the proposed model with the results of finite element analysis. The analysis results of other existing models are included in the comparison. For this purpose, 2 story building having 3 spans in both directions is considered. Analytical results show that the modified equivalent frame model produces comparable drift and slab internal moments with those obtained from finite element analysis.

An Analytical Study on the Elasto-Plastic Behavior of Reinforced Concrete Structure under Monotonic & Cyclic Load (단조 증가 및 반복 하중을 받는 철근 콘크리트 구조물의 탄소성 거동에 대한 해석적 연구)

  • 김화중;박정민;마은희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.131-138
    • /
    • 1993
  • To analysis machanical behavior for RC frame under monotonic & Cyclic load, it is needed to investigate elasto-plastic behavior for steel & concrete. Therefore, in this study, we idealized material model(steel and concrete) to take into account elasto-plastic, limit state, and developed structural analysis program that consider complex non-linearity. We investigated simple beam and portal frame under cyclic & monotonic loading, so we confirmed the propriety.

  • PDF

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.

Improved H.263+ Rate Control via Variable Frame Rate Adjustment and Hybrid I-frame Coding

  • 송환준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.726-742
    • /
    • 2000
  • A novel rte control algorithm consisting of two major components, i.e. a variable encoding frame rate method and a hybrid DCT/wavelet I-frame coding scheme, is proposed in this work for low bit rate video coding. Most existing rate control algorithms for low bit rate video focus on bit allocation at the macroblock level under a constant frame rate assumption. The proposed rate control algorithm is able to adjust the encoding frame rate at the expense of tolerable time-delay. Furthermore, an R-D optimized hybrid DCT/wavelet scheme is used for effective I-frame coding. The new rate-control algorithm attempts to achieve a good balance between spatial quality and temporal quality to enhance the overall human perceptual quality at low bit rates. It is demonstrated that the rate control algorithm achieves higher coding efficiency at low bit rates with a low additional computational cost. The variable frame rate method and hybrid I-frame coding scheme are compatible with the bi stream structure of H.263+.

  • PDF

A Study on the Cognitive Learning of Meaning through Frame Semantics (틀 의미론을 통한 인지적 의미학습에 관한 연구)

  • Oh, Ju-Young
    • Cross-Cultural Studies
    • /
    • v.19
    • /
    • pp.295-311
    • /
    • 2010
  • The concept of frame in semantics has implications for our understanding of such problematic terms as "meaning" and "concept". It is conventional to say that a particular word corresponds to a particular "concept" and to assume that concepts are essentially identical across speakers. In contrast, the notion of frame accepts that the frame for a particular word can vary across speakers as a function of their particular life experience. To say, instead of thinking in terms of words as expressing "concepts", we should think of them as tools, like frames, that cause listeners to activate certain areas of their knowledge base, with different areas activated to different degrees in different contexts of use. This notion is Fillmore's most crucial contribution to current cognitive linguistic theories, and his frame semantics is built on such a notion. This paper discusses the basic assumptions and goals of frame semantics, and examines the notion of frame and illustrates various framing words of English and Korean under such a notion.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.