• Title/Summary/Keyword: Uncooled IR sensor

Search Result 5, Processing Time 0.018 seconds

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

Electro-Thermal Modeling and Experimental Validation of Integrated Microbolometer with ROIC

  • Kim, Gyungtae;Kim, Taehyun;Kim, Hee Yeoun;Park, Yunjong;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.367-374
    • /
    • 2016
  • This paper presents an electro-thermal modeling of an amorphous silicon (a-Si) uncooled microbolometer. This modeling provides a comprehensive solution for simulating the electro-thermal characteristics of the fabricated microbolometer and enables electro-thermal co-simulation between MEMS and CMOS integrated circuits. To validate this model, three types of uncooled microbolometers were fabricated using a post-CMOS surface micromachining process. The simulation results show a maximum discrepancy of 2.6% relative to the experimental results.

Fabrications and Characteristics of Infrared Sensor Composed of λ/4 Absorbing Structure for the Application of NDIR CO2 Gas Sensor (λ/4 흡수층 구조를 갖는 NDIR 이산화탄소 가스센서용 적외선 센서의 제조 및 특성)

  • Lee, Sung-Hyun;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1005-1009
    • /
    • 2008
  • A noble infrared $\lambda/4$ absorbing structure using metal reflector was studied for uncooled infrared sensors. This paper described the design and the fabrication of IR uncooled detectors which were composed of 21 by 21 elements using the surface micromachining technology. The characteristics of the array were investigated in the spectral region of 4.26 ${\mu}m$. The fabricated detectors exhibited the thermal mass of $9.75\times10^{-9}$ J/K, the thermal conductance of $1.31\times10^{-6}$ W/K, the thermal time constant of 7.4 ms, the responsivity of $1.07\times10^5$ V/W and the detectivity of $1.04\times10^9$ $cmHz^{1/2}/W$, at the chopper frequency of 10 Hz and the bias current of 9.22${\mu}A$. Finally the absorptance efficiency of $\lambda/4$ absorbing structure was about 23.2 % higher than that of absence absorbing structure.

Uncooled amorphous silicon 16x16 infrared focal plane arrays development (비정질 실리콘 기반의 비냉각형 16x16 적외선 초점면배열의 개발)

  • Cheon, Sang-Hoon;Cho, Seong-M.;Yang, Woo-Seok;Ryu, Ho-Jun;Yang, Ki-Dong;Yu, Byoung-Gon;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2009
  • This paper describes the design and fabrication of 16$\times$16 microbolometer infrared focal plane arrays based on iMEMS technology. Amorphous silicon was used for infrared-sensitive material, and it showed the resistance of 18 Mohm and the temperature coefficient of resistivity of -2.4 %. The fabricated sensors exhibited responsivity of 78 kV/W and thermal time constant of 8.0 msec at a bias voltage of 0.5 V. The array performances had satisfactory uniformity less than 5 % within one-sigma. Also, 1/f noise of pixel was measured and the noise factor of $6\times10^{-11}$ was extracted. Finally, we obtained detectivity of $1.27\times10^9cmHz^{0.5}/W$ and noise equivalent temperature difference of 200 mK at a frame rate of 30 Hz.