• Title/Summary/Keyword: Unconstrained Optimization Problem

Search Result 68, Processing Time 0.023 seconds

Application of Numerical Optimization Technique to the Design of Fans (송풍기 설계를 위한 수치최적설계기법의 응용)

  • Kim, K.Y.;Choi, J.H.;Kim, T.J.;Rew, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

Optimization of ship inner shell to improve the safety of seagoing transport ship

  • Yu, Yan-Yun;Lin, Yan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.454-467
    • /
    • 2013
  • A practical Ship Inner Shell Optimization Method (SISOM), the purpose of which is to improve the safety of the seagoing transport ship by decreasing the maximum Still Water Bending Moment (SWBM) of the hull girder under all typical loading conditions, is presented in this paper. The objective of SISOM is to make the maximum SWBM minimum, and the section areas of the inner shell are taken as optimization variables. The main requirements of the ship performances, such as cargo hold capacity, propeller and rudder immersion, bridge visibility, damage stability and prevention of pollution etc., are taken as constraints. The penalty function method is used in SISOM to change the above nonlinear constraint problem into an unconstrained one, which is then solved by applying the steepest descent method. After optimization, the optimal section area distribution of the inner shell is obtained, and the shape of inner shell is adjusted according to the optimal section area. SISOM is applied to a product oil tanker and a bulk carrier, and the maximum SWBM of the two ships is significantly decreased by changing the shape of inner shell plate slightly. The two examples prove that SISOM is highly efficient and valuable to engineering practice.

A Study on Genetic Algorithms to Solve Nonlinear Optimization Problems (비선형 최적화 문제 해결을 위한 유전 알고리즘에 관한 연구)

  • 윤영수;이상용;류영근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.15-22
    • /
    • 1996
  • Methods to find an optimal solution that is the function of the design variables satisfying all constraints have been studied, there are still many difficulties to apply them to optimal design problems. A method to solve the above difficulties is developed by using Genetic Algorithms. but, several problems that conventional GAs are ill defined are application of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an modified GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

Design of an Optimal State Feedback Controller for Container Crane Systems with Constraints (제약조건을 가지는 컨테이너 크레인 시스템용 최적 상태궤환 제어기 설계)

  • 주상래;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • This paper presents the design of an optimal state feedback controller for container cranes under some design specifications. To do this, the nonlinear equation of a container crane system is linearized and then augmented to eliminate the steady-state error, and some constraints are derived from the design specifications. Designing the controller involves a constrained optimization problem which classical gradient-based methods have difficulties in handling. Therefore, a real-coding genetic algorithm incorporating the penalty strategy is used. The responses of the proposed control system are compared with those of the unconstrained optimal control system to illustrate the efficiency.

  • PDF

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

Receding Horizon Control (이동구간 제어기법)

  • 권욱현;안춘기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.177-185
    • /
    • 2003
  • Current issues of receding horizon control scheme are reviewed. The basic idea of receding horizon control is presented first. For unconstrained and constrained systems, the results of closed-loop stability in receding horizon control are surveyed. We investigate the two categories of robustness of receding horizon control : stability robustness and performance robustness. The existing optimization algorithm to solve receding horizon control problem is briefly mentioned. It is shown that receding horizon control has been extended to nonlinear systems without losing good properties such as stability and robustness. Many industrial applications are reported along with extensive references related to receding horizon control.

Optimum Design of Power Screw Efficiency by Fuzzy Simplex Search Algorithm (퍼지 simplex search 알고리듬을 이용한 동력 스크류 효율의 최적설계)

  • Hyun, Chang-Hun;Lee, Byeong-Ki
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.19-28
    • /
    • 2002
  • The Nelder-Mead simplex algorithm has been one of the most widely used methods for the nonlinear unconstrained optimization, since 1965. Recently, the new algorithm, (so-called the Fuzzy Simplex Algorithm), with fuzzy logic controllers for the expansion, reflection and contraction process of this algorithm has been proposed. In this paper, this new algorithm is developed. And, the formulation for the optimum design of the power screw's efficiency is made. And then, the developed fuzzy simplex algorithm as well as the original one is applied to this optimum design problem. The Fuzzy simplex algorithm results in a faster convergence in this problem, as reported in other study, too.

  • PDF

The Section Optimization of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 단면최적화)

  • 노금래;김만철;박선규;이인원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

Uncalibrated Visual Servoing through the Efficient Estimation of the Image Jacobian for Large Residual

  • Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.385-392
    • /
    • 2013
  • An uncalibrated visual servo control method for tracking a target is presented. We define the robot-positioning problem as an unconstrained optimization problem to minimize the image error between the target feature and the robot end-effector feature. We propose a method to find the residual term for more precise modeling using the secant approximation method. The composite image Jacobian is estimated by the proper method for eye-to-hand configuration without knowledge of the kinematic structure, imaging geometry and intrinsic parameter of camera. This method is independent of the motion of a target feature. The algorithm for regulation of the joint velocity for safety and stability is presented using the cost function. Adaptive regulation for visibility constraints is proposed using the adaptive parameter.

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.