• Title/Summary/Keyword: Unconfined Compressive Strength

Search Result 417, Processing Time 0.027 seconds

Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning (딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템)

  • Park, Bohyun;Kim, Dookie;Park, Dae-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2020
  • The unconfined compressive strength of lightweight treated soils strongly depends on mixing ratio. To characterize the relation between various LTS components and the unconfined compressive strength of LTS, extensive studies have been conducted, proposing normalized factor using regression models based on their experimental results. However, these results obtained from laboratory experiments do not expect consistent prediction accuracy due to complicated relation between materials and mix proportions. In this study, deep neural network model(Deep-LTS), which was based on experimental test results performed on various mixing conditions, was applied to predict the unconfined compressive strength. It was found that the unconfined compressive strength LTS at a given mixing ratio could be resonable estimated using proposed Deep-LTS.

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

Characteristics of Uncofined Compressive Strength and Flow in Controlled Low Strength Materials Made with Coal Ash (석탄회를 활용한 저강도고유동화재의 일축압축강도 및 플로우 특성)

  • Kong, Jin-Young;Kang, Hyoung-Nam;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2010
  • Controlled low strength material (CLSM) is a flowable mixture and does not need to be compacted. It is produced by mixing portland cement, fly ash, fine aggregates, water and chemical admixtures. Sand is the most commonly used fine aggregates in the conventional CLSM, but it is getting more and more difficult to obtain sand in Korea. In this study, the characteristics of unconfined compressive strength, flow and applicability of a new CLSM that is produced by mixing of pond ash, fly ash, water, cement are examined. An unconfined compressive strength satisfies the standard unconfined compressive strength (0.5~1.0 MPa) were obtained when the mixture ratio of pond ash and fly ash is 30:70~70:30, cement ratio is 3.0~5.0%, and water content is 31~34%. The results of flow test indicate that the mixture ratio of pond ash and fly ash which satisfy the standard How value (0.2 m) is 30:70~70:30.

The Study on the Correlation between Unconfined Compressive Strength and Point Load Strength within the Gneiss Complex in Gyunggi Province (경기 동부 지역 편마암복합체내의 일축압축강도와 점하중강도의 상관관계에 관한 연구)

  • Cha, Areum;Song, Joonho;Choi, Hyunseok;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • The strength evaluation of rocks is a very important factor in designing and constructing tunnels or underground excavation. However, it takes a lot of time and endeavor to perform the unconfined compressive strength test for practice and a number of tests are limited. In order to make up for this method, the point load strength test is suggested. Generally, the strength of a rock differs depending on its type and region. However, as people unite the Point Load Strength Indexes of various regions and types to use in practice in many cases, they find difficulty in analogizing the exact strength. The purpose of this study is suggestion of the value in construction site by analizing the relation of both unconfined compressive and point load strength in the Gyeonggi gneiss complex.

  • PDF

Strength Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 특성)

  • Jin, Guang-Ri;Shin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.844-851
    • /
    • 2009
  • A soil mixture with low permeability and bentonite as an additive has been highly utilized as a cutoff material in landfills, banks, and dams. Even though it is anticipated that the water can seep through shear failures in the filter layer due to external loads and embankment loads during construction, usually only the coefficient of permeability of the soil mixture is considered rather than the changes of strength from the different amounts of additives. Therefore, the amount of bentonite was changed between 0%~4% in the soil mixture of the bed material to conduct a series of unconfined compressive strength, tensile strength, and shear strength tests on a specimen in order to study the characteristics of the strength. In the result, the unconfined compressive and tensile strength were increased along with the increased amount of bentonite in the low water content; however, the tensile strength in the consolidated-drained shear test generally showed similar values without significant changes.

  • PDF

Compaction and unconfined compressive strength of sand modified by class F fly ash

  • Bera, Ashis K.;Chakraborty, Sourav
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.261-273
    • /
    • 2015
  • In the present investigation, a series of laboratory compaction and unconfined compressive strength laboratory tests has been performed. To determine the effect of compaction energy, type of sand, and fly ash content, compaction tests have been performed with varying compaction energy ($2700kJ/m^3-300kJ/m^3$), types of sand, and fly ash content (0% to 40%) respectively. From the experimental results, it has been found that the optimum value of unconfined compressive strength obtained for a sand-fly ash mixture comprised of 65% sand and 35% fly ash. Based on the data obtained in the present investigation, a linear mathematical model has been developed to predict the OMC of sand-fly ash mixture.

Curing Characteristics of Controlled Low Strength Material Made with Coal Ashes (석탄회를 사용한 저강도 고유동화재의 경화 특성 분석)

  • Kim, Juhyong;Cho, Samdeok;Kong, Jinyoung;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.77-85
    • /
    • 2010
  • Unconfined compressive strength tests were performed to evaluate curing characteristics of controlled low strength material(CLSM) made with coal ashes. It is found that unconfined compressive strength normalized by curing times, increases as decreasing the water contents of CLSM particularly during first three days. Dynamic cone penetrometer tests were also carried out to evaluate cost-effective CLSM lump strength characteristics with time. It takes around 10 days to reach target strength, 500kPa (penetration rate, 20mm/blow). Curing rate significantly decreases after 10 days elapsed regardless of CLSM formulation.

Engineering Properties of Fiber Mixed Soil (섬유 혼합토의 공학적 특성)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.