• Title/Summary/Keyword: Uncertainty parameter

Search Result 702, Processing Time 0.026 seconds

A Study on the Robust Speed Controller of Induction Motor (유도전동기의 강인 속도 제어기에 관한 연구)

  • Byun, Hwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.612-615
    • /
    • 1997
  • In this paper, a robust speed controller considering the effect of uncertainty (plant parameter variation. external load disturbance. unmodeled and nonlinear dynamics etc..) for induction motor is proposed. Firstly. the dynamic model at nominal case of induction motor is estimated. Based on the estimated model. the IPSC ( Integral - Proportional Speed Controller) is designed. Then a DTRC (Dead-time Robust Controller) combining DTC ( Dead-time Compensator) & SRC (Simple Robust Controller) is designed to reduce the effects of parameter variation and external disturbance. Some simulated results are provided to demonstrate the effectiveness of the proposed controller.

  • PDF

$H^{\infty}$ robust adaptive controller design with parameter uncertainty, unmodeled dynamic and bounded noise (파라미터 불확실성,모델 불확실성,한계 잡음에 대한 $H^{\infty}$ 적응제어기 설계)

  • Baek, Nam-Seok;Yang, Won-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.454-456
    • /
    • 1998
  • Traditional adaptive control algorithms are not robust to dynamic uncertainties. The adaptive control algorithms developed previously to deal with dynamic uncertainties do not facilitate quantitative design. We proposed a new robust adaptive control algorithms consists of an $H^{\infty}$ suboptimal control law and a robust parameter estimator. Numerical examples showing the effectiveness of the $H^{\infty}$ adaptive scheme are provided.

  • PDF

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

Adaptive Pole-Placement and Self-Tuning Control for a Robotic Manipulator (적응 극점 배치 및 자기동조 제어 방법에 의한 로보트 매니퓰레이터 제어)

  • 이상효;양태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.655-662
    • /
    • 1988
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a deired trajectory in spite of the presence of nonlinearies and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which controls the extended linearized perturbaton model via the pole placement, and this control. The feasibility of the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

  • Chiba, Go;Tsuji, Masashi;Narabayashi, Tadashi
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.281-290
    • /
    • 2014
  • In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

The $H_{\infty}$ control of the uncertainty for the hydraulic fluid valve-motor system (유압 밸브-모터 시스템의 불확실성에 대한 $H_{\infty}$ 제어)

  • Kim, D.S.;Lee, J.H.;Yoo, S.H.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.676-681
    • /
    • 2000
  • This study describes a hydraulic fluid property compensator under the various operating conditions. Because hydraulic fluid systems have much more excellent features than other control systems, they are used in many fields. However, the characteristics of hydraulic fluid are changed due to various operating conditions. This phenomenon is called uncertainty. Especially, bulk modulus is considered as the most dominant parameter in this study. Under the wide range of temperature and pressure, bulk modulus is changed. In order to overcome the uncertainty, $H_{\infty}$ technique will be used for this study. Spectral factorization, model-matching problem and controller parametrization are also applied to achieve the desired robust control action. Designed controller using the $H_{\infty}$ technique, is adopted for the hydraulic fluid valve-motor system.

  • PDF

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

A Bayesian uncertainty analysis for nonignorable nonresponse in two-way contingency table

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1547-1555
    • /
    • 2015
  • We study the problem of nonignorable nonresponse in a two-way contingency table and there may be one or two missing categories. We describe a nonignorable nonresponse model for the analysis of two-way categorical table. One approach to analyze these data is to construct several tables (one complete and the others incomplete). There are nonidentifiable parameters in incomplete tables. We describe a hierarchical Bayesian model to analyze two-way categorical data. We use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. To reduce the effects of nonidentifiable parameters, we project the parameters to a lower dimensional space and we allow the reduced set of parameters to share a common distribution. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data to obtain the finite population proportions.

Design of Sliding Mode Controller with Uncertainty Adaptation

  • Kim, Min-Chan;Nam, Jing-Rak;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • In this paper, a sliding mode control method with uncertainty adaptation is proposed by introducing the virtual state. Because upper bound of the uncertainty is very difficult to know, we estimate this by using the simple adaptation law and design the sliding surface which has dynamic of nominal system. An optimal controller is used by nominal controller. And if initial values of the virtual state are chosen properly, the reaching phase is removed.