• Title/Summary/Keyword: Uncertainty Theory

Search Result 578, Processing Time 0.022 seconds

Decentralized $H_\infty$ Control with Performance for Uncertain Linear Interconnected Systems with Time Delay (시간 지연을 갖는 불확실 대형 연결 시스템의 분산 $H_\infty$ 제어)

  • 심덕선;김연재
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.333-338
    • /
    • 2000
  • This paper considers the decentralized control problem of linear time-invariant interconnected systems with delays. A decentralized output-feedback controller to obtain both stability and performance of the interconnected system is designed using the standard $H_\infty$ control theory, This paper provides sufficient conditions for such a controller to exist and provides an output feedback controller.

  • PDF

BIVARIATE DYNAMIC CUMULATIVE RESIDUAL TSALLIS ENTROPY

  • SATI, MADAN MOHAN;SINGH, HARINDER
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.45-58
    • /
    • 2017
  • Recently, Sati and Gupta (2015) proposed two measures of uncertainty based on non-extensive entropy, called the dynamic cumulative residual Tsallis entropy (DCRTE) and the empirical cumulative Tsallis entropy. In the present paper, we extend the definition of DCRTE into the bivariate setup and study its properties in the context of reliability theory. We also define a new class of life distributions based on bivariate DCRTE.

The Generator Maintenance Scheduling using Fuzzy Multi-criteria (퍼지다목적함수를 이용한 발전기보수유지계획의 수립)

  • 최재석;도대호;이태인
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.131-138
    • /
    • 1995
  • A new technique using integer programming based on fuzzy multi-criteria function is proposed for generator maintenance scheduling. Minimization maintenance delay cost and maximization reserve power are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria integer programming is used. In the maintenance scheduling, a characteristic feature of the presented approach is that the crisp constraints with uncertainty can be taken into account by using fuzzy set theory and so more flexible solution can be obtained. The effectiveness of the proposed approach is demonstrated by the simulation results.

  • PDF

Fuzzy Sets Application to System Reliability Analysis (시스템 신뢰도 분석에서의 퍼지집합 응용)

  • Yun, Won-Young;Heo, Gil-Hwan
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.67-78
    • /
    • 1993
  • In this paper, we deal with the application of the fuzzy sets theory to evaluate and estimate the system reliability under the fault tree analysis. We formulate the uncertainty of component reliability to fuzzy sets, and propose a procedure for obtaining the system reliability in case the system structure is described by fault tree. An importance measure of each component is proposed. Computer program for fuzzy fault tree analysis(FFTA) is developed using C language to obtain the system reliability and the component‘s fuzzy importance.

  • PDF

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Shortest Path Problem in a Type-2 Fuzzy Weighted Graph (타입 2-퍼지 가중치 그래프에서 최단경로 문제)

  • 이승수;이광형
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.528-531
    • /
    • 2001
  • Finding a shortest path on a graph is a fundamental problem in the area of graph theory. In an application where we cannot exactly determine the weights of edges fuzzy weights can be used instead of crisp weights. and Type-2 fuzzy weight will be more suitable of this uncertainty varies under some conditions. In this paper, shortest path problem in type-1 fuzzy weighted graphs is extended for type 2 fuzzy weighted graphes. A solution is also given based on possibility theory and extension principle.

  • PDF

Robust Tracking Control of Robotic Manipulators Using Fuzzy-Sliding Modes (퍼지-슬라이딩모드를 이용한 로봇의 강건추적제어)

  • 김정식;최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2088-2100
    • /
    • 1994
  • Considerable attention has been given to controller designs that utilize the variable structure system theory in order to achieve robust tracking performance of robotic manipulators subjected to parameter variations and extraneous disturbances. However, the theory has not had wide spread acceptance in practical control engineering community due mainly to the worry of chattering which is inherently ever-existing in the variable structure system. This paper presents a novel type of fuzzy-sliding mode controller to alleviate the chattering problem. A sliding mode controller for robust robot control is firstly synthesized with an assumption that the imposed system uncertainties satisfy matching conditions so that certain deterministic performances can parameters and control rules are obtained from a relation between predetermined sliding surfaces and representative points in the error state space. A two degree-of-freedom robotic manipulator subjected to a variable payload and a torque disturbance is considered in order to demonstrate superior tracking performance accrued from the proposed methodology.

The effect of switching costs on resistance to change in the use of software

  • Perera, Nipuna;Kim, Hee-Woong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.539-544
    • /
    • 2007
  • People tend to resist changing their software even alternatives are better then the current one. This study examines the resistance to change in the use of software from the switching costs perspective based on status quo bias theory. For this study, we select Web Browsers as software. Based on the classification of switching costs into three groups (psychological, procedural, and loss), this study identifies six types of switching costs (uncertainty, commitment, learning, setup, lost performance, and sunk costs). This study tests the effects of six switching costs on user resistance to change based on the survey of 204 web browser users. The results indicate that lost performance costs and emotional costs have significant effects on user resistance to change. This research contributes towards understanding of switching costs and the effects on user resistance to change. This study also offers suggestions to software vendors for retaining their users and to organizations for managing user resistance in switching and adopting software.

  • PDF

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF