• 제목/요약/키워드: Uncertain systems

Search Result 1,027, Processing Time 0.022 seconds

OPTIMAL DESIGN OF BATCH-STORAGE NETWORK APPLICABLE TO SUPPLY CHAIN

  • Yi, Gyeong-beom;Lee, Euy-Soo;Lee, In-Beom
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1859-1864
    • /
    • 2004
  • An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.

  • PDF

A Highly Robust Integral Optimal Variable Structure System (고 강인성 적분 최적 가변구조 제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.87-100
    • /
    • 2005
  • In this paper, a design of an integral augmented optimal variable structure system(IOVSS) is presented for the prescribed output control of uncertain SISO systems under persistent disturbances. This algorithm aims at removing the problems of the reaching phase by incorporating advanced optimal control theory. By means of an integral sliding surface, the reaching phase is completely removed, and the integral sliding surface can be defined from a given initial state to origin without any reaching phase. The ideal sliding dynamics of the integral sliding surface is obtained in the form of the state equation and is designed in an optimal sense by targeting the design of the integral sliding surface and equivalent control input. The corresponding control input is selected in order to generate the sliding mode on the predetermined integral sliding surface. As a result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent disturbances. Moreover the prediction/predetermination of output is enabled, which helps in improving the performance over previously implemented VSS's. Through an illustrative example, the usefulness of the algorithm is shown.

  • PDF

Greedy Technique for Smart Grid Demand Response Systems (스마트 그리드 수요반응 시스템을 위한 그리디 스케줄링 기법)

  • Park, Laihyuk;Eom, Jaehyeon;Kim, Joongheon;Cho, Sungrae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.391-395
    • /
    • 2016
  • In the last few decades, global electricity consumption has dramatically increased and has become drastically fluctuating and uncertain causing blackout. Due to the unexpected peak electricity demand, we need significant electricity supply. The solutions to these problems are smart grid system which is envisioned as future power system. Smart grid system can reduce electricity peak demand and induce effective electricity consumption through various price policies, demand response (DR) control methodologies, and state-of-the-art smart equipments in order to optimize electricity resource usage in an intelligent fashion. Demand response (DR) is one of the key technologies to enable smart grid. In this paper, we propose greedy technique for demand response smart grid system. The proposed scheme focuses on minimizing electricity bills, preventing system blackout and sacrificing user convenience.

A Physical-layer Security Scheme Based on Cross-layer Cooperation in Dense Heterogeneous Networks

  • Zhang, Bo;Huang, Kai-zhi;Chen, Ya-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2595-2618
    • /
    • 2018
  • In this paper, we investigate secure communication with the presence of multiple eavesdroppers (Eves) in a two-tier downlink dense heterogeneous network, wherein there is a macrocell base station (MBS) and multiple femtocell base stations (FBSs). Each base station (BS) has multiple users. And Eves attempt to wiretap a macrocell user (MU). To keep Eves ignorant of the confidential message, we propose a physical-layer security scheme based on cross-layer cooperation to exploit interference in the considered network. Under the constraints on the quality of service (QoS) of other legitimate users and transmit power, the secrecy rate of system can be maximized through jointly optimizing the beamforming vectors of MBS and cooperative FBSs. We explore the problem of maximizing secrecy rate in both non-colluding and colluding Eves scenarios, respectively. Firstly, in non-colluding Eves scenario, we approximate the original non-convex problem into a few semi-definite programs (SDPs) by employing the semi-definite relaxation (SDR) technique and conservative convex approximation under perfect channel state information (CSI) case. Furthermore, we extend the frame to imperfect CSI case and use the Lagrangian dual theory to cope with uncertain constraints on CSI. Secondly, in colluding Eves scenario, we transform the original problem into a two-tier optimization problem equivalently. Among them, the outer layer problem is a single variable optimization problem and can be solved by one-dimensional linear search. While the inner-layer optimization problem is transformed into a convex SDP problem with SDR technique and Charnes-Cooper transformation. In the perfect CSI case of both non-colluding and colluding Eves scenarios, we prove that the relaxation of SDR is tight and analyze the complexity of proposed algorithms. Finally, simulation results validate the effectiveness and robustness of proposed scheme.

Priority Scheduling of Digital Evidence in Forensic (포렌식에서 디지털 증거의 우선순위 스케쥴링)

  • Lee, Jong-Chan;Park, Sang-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2055-2062
    • /
    • 2013
  • Digital evidence which is the new form of evidence to crime makes little difference in value and function with existing evidences. As time goes on, digital evidence will be the important part of the collection and the admissibility of evidence. Usually a digital forensic investigator has to spend a lot of time in order to find clues related to the investigation among the huge amount of data extracted from one or more potential containers of evidence such as computer systems, storage media and devices. Therefore, these evidences need to be ranked and prioritized based on the importance of potential relevant evidence to decrease the investigate time. In this paper we propose a methodology which prioritizes order in which evidences are to be examined in order to help in selecting the right evidence for investigation. The proposed scheme is based on Fuzzy Multi-Criteria Decision Making, in which uncertain parameters such as evidence investigation duration, value of evidence and relation between evidence, and relation between the case and time are used in the decision process using the aggregation function in fuzzy set theory.

Performance Improvement of Offline Phase for Indoor Positioning Systems Using Asus Xtion and Smartphone Sensors

  • Yeh, Sheng-Cheng;Chiou, Yih-Shyh;Chang, Huan;Hsu, Wang-Hsin;Liu, Shiau-Huang;Tsai, Fuan
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.837-845
    • /
    • 2016
  • Providing a customer with tailored location-based services (LBSs) is a fundamental problem. For location-estimation techniques with radio-based measurements, LBS applications are widely available for mobile devices (MDs), such as smartphones, enabling users to run multi-task applications. LBS information not only enables obtaining the current location of an MD but also provides real-time push-pull communication service. For indoor environments, localization technologies based on radio frequency (RF) pattern-matching approaches are accurate and commonly used. However, to survey radio information for pattern-matching approaches, a considerable amount of time and work is spent in indoor environments. Consequently, in order to reduce the system-deployment cost and computing complexity, this article proposes an indoor positioning approach, which involves using Asus Xtion to facilitate capturing RF signals during an offline site survey. The depth information obtained using Asus Xtion is utilized to estimate the locations and predict the received signal strength (RF information) at uncertain locations. The proposed approach effectively reduces not only the time and work costs but also the computing complexity involved in determining the orientation and RF during the online positioning phase by estimating the user's location by using a smartphone. The experimental results demonstrated that more than 78% of time was saved, and the number of samples acquired using the proposed method during the offline phase was twice as much as that acquired using the conventional method. For the online phase, the location estimates have error distances of less than 2.67 m. Therefore, the proposed approach is beneficial for use in various LBS applications.

Design of VMS Fuzzy Feedback Controller for VMS Routing Information (대안경로 안내용 VMS 퍼지 피드백 제어기법)

  • Park, Eun-Mi;O, Hyeon-Seon;Yang, Tae-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • Variable Message Signs have been used for providing information on the current traffic conditions. However, it is considered more important to achieve optimal traffic allocation among the alternative routes by strategic VMS information provision. Fuzzy control is very effective and efficient to deal with such systems that are too complex and uncertain to build mathematical models. In this paper, a fuzzy feedback controller for VMS is proposed, whose goal is to achieve the travel time equilibrium between the two alternative routes. The performance of the suggested controller is implemented and examined using MATLAB/Simulink. More robust controller applicable to a real highway network is suggested for the further research.

Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea (위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이)

  • Son, Young Baek;Jang, Chan Joo;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

A Strategy to Integrated Emission Trading System for Greenhouse Gas with that of Air Pollutants (대기오염물질과 온실가스 배출권 거래제 연계 방안)

  • Lee Kyoo-Yong;Lee Jae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.561-571
    • /
    • 2005
  • To introduce an emissions trading system for GHG that currently have no reduction requirements, the following should be considered as priorities: eliciting the participation of the industrial sector and linking GHG emission trading systems to the emissions trading system (implemented from July 2007) that has become part of national policy with the enactment of the Special Act. Two directions can serve as viable alternatives in that regard. One is a baseline-and-credit method based on incentive auctioning. This has the advantage of inducing participation through economic incentives without a reductions commitment. The downside of this method is that it requires vast investments, as well as the fact that reaching an agreement between participants and the government to decide an objective baseline is difficult. On the other hand, the cap-and-trade method set forth in the Special Act is attractive in that it can be integrated with the air pollutant emissions trading system, but it would be difficult to elicit the participation of the industrial sector in the absence of GHG emission reduction requirements. In the current situation, it would be preferable for the government to induce the participation of the industrial sector by devising a wide variety of incentives because taking part in the emissions trading system before reducing GHG emissions offers large incentives through learning by doing. The timing of GHG reduction commitments and emissions trading system implementation may be uncertain but their Implementation will be unavoidable. Thus the government needs to facilitate preparations for emissions trading of GHG in the future and continuously review its operation in integration with the air pollutant emissions trading system to maximize adaptation and teaming by doing effect in the industrial sector.

Finite element model updating of Kömürhan highway bridge based on experimental measurements

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Turker, Temel
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • The updated finite element model of K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge on the Firat River located on the $51^{st}$ km of Elazi$\breve{g}$-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.