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I. Introduction The problem of controlling uncertain 

dynamical systems under parameter variations and 

extraneous disturbances has been studied for a long 

time[1]-[5]. The theory of the variable structure 

system(VSS) or sliding mode control(SMC) can 

provide the effective means to solve this 

problem[1][2]. One of its essential advantages is the 

capacity of the controlled system to counteract 
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Abstract 

In this paper, a design of an integral augmented optimal variable structure system(IOVSS) is presented for 

the prescribed output control of uncertain SISO systems under persistent disturbances. This algorithm aims at 

removing the problems of the reaching phase by incorporating advanced optimal control theory. By means of 

an integral sliding surface, the reaching phase is completely removed, and the integral sliding surface can be 

defined from a given initial state to origin without any reaching phase. The ideal sliding dynamics of the 

integral sliding surface is obtained in the form of the state equation and is designed in an optimal sense by 

targeting the design of the integral sliding surface and equivalent control input. The corresponding control 

input is selected in order to generate the sliding mode on the predetermined integral sliding surface. As a 

result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent 

disturbances. Moreover the prediction /predetermination of output is enabled, which helps in improving the 

performance over previously implemented VSS's. Through an illustrative example, the usefulness of the 

algorithm is shown.

요  약

본 연구는 불확실성이 존재하는 다이나믹 시스템을 고 강인성 및 성능 사전 결정 제어를 하기 위하여 적분 최적 

가변구조 시스템을 설계한다. 제안된 제어기에서는 적분 슬라이딩 면을 이용 리칭 문제를 완전히 제거하여 시스템

이 초기 값에서부터 바로 슬라이딩하여 외란과 불확실성에 무관하게 사전에 결정된 슬라이딩 면을 슬라이딩 모드 

상태로 추종하므로 고 강인성 제어가 이루어진다. 적분 슬라이딩 면이 정의하는 이상 슬라이딩 동특성을 상태방정

식 형으로 얻고, 고급 최적 제어 이론을 통하여 최적 의미로 설계한다. 이는 바로 슬라이딩 면과 등가 제어입력의 

설계가 된다. 사전에 선정된 슬라이딩 면 위에 슬라이딩 모드를 발생할 제어입력을 설계하였다. 그 결과 외란과 

불확정성에도 불구하고 주어진 초기 값에서부터 원점까지 전체 슬라이딩 출력이 완전하게 보장받는다. 더구나 기

존의 최적 VSS에서는 설계 성능의 강인성을 보장받기 어려운데 반하여, 제안된 IOVSS에서는 실제 출력의 예측

과 사전 결정이 가능하다. 예제를 들어 제안된 알고리듬의 성능을 검진한다.
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variations of parameters and external disturbances 

in the sliding mode on the sliding surface s(t)=0. 

The properly designed sliding surface can match 

desired output dynamics and performances. Many 

design algorithms including the linear(optimal 

control[6][7], eigenstructure assignment[8][9], 

geometric approach[10], differential geometric 

approach[11]), and nonlinear techniques have been 

reported. Moreover, an integral action also has 

augmented by the two groups[7][12]-[14]. The first 

strategy suggests improving the steady state 

performance[7][12][13] against the external 

disturbances in the digital implementation of the 

VSS, and the other one aims at reducing the 

chattering problems by filtering the discontinuous 

input[14]. Futhermore, with respect to the optimal 

VSS, other augmentation strategies include the 

optimal design of the sliding surface[6][7][9] and the 

optimization of the discontinuous VSS itself[1][16].

Unfortunately, most of the VSS's have the 

reaching phase which called the transient period 

which is the period till the representative point first 

touches the sliding surface from the beginning. 

During this reaching phase, the controlled systems 

may be sensitive to the parameter variations and 

external disturbances because the sliding mode is 

not realized[17]. And it is difficult to improve the 

performance in the sliding surface for the real 

output based on the above mentioned strategies. 

Moreover, introducing the integral action to the VSS 

without removing the reaching phase can inevitably 

cause the overshoot problems.

In the context of already established research 

work on VSS, very few studies deal with the 

problem of reaching phase. One mitigation strategy 

is the use of the high-gain feedback[18]. But, it has 

also some drawbacks for example sensitivity to the 

unmodelled dynamics and actuator saturation[17]. 

The adaptive rotating or shifting of the sliding 

surface is suggested to reduce the reaching phase 

problems in [2][19], and the sliding surface 

connected in segments to the origin from a given 

initial condition is also suggested[20]. But these 

different techniques and segmented sliding surface 

are applicable to only second order systems and 

their outputs are not predictable. In [21], the 

exponential term is added to the conventional linear 

sliding surface is order to make s(t)=0  at t=0. 

But, its resultant sliding dynamics becomes 

nonlinear.

In this paper, an integral augmented optimal 

variables structure system(IOVSS) is suggested for 

the control of uncertain n-th order SISO systems 

with the predetermination/prediction of output. The 

reaching phase is completely removed by the 

augmentation of an integral with special non zero 

initial value to the conventional sliding surface. 

Using the advanced optimal technique by minimizing 

the time-weighted performance index[25], the 

stationary linear sliding dynamics are obtained in 

the form of the state equation that also ensures the 

predetermination of output. A corresponding control 

is selected to completely guarantee the sliding mode 

on the every point of the predetermined integral 

sliding surface for protecting the designed optimal 

output from parameter variations and disturbances. 

By removing reaching phase and optimizing the 

VSS based on the advanced optimal theory, the 

advantages of the algorithm are discussed including 

the predetermination of output. Finally an example 

is presented to show the effectiveness of the 

algorithm in comparison to typical VSS having the 

conventional linear sliding surface.

II. Integral Optimal Variable Structure 

Systems

2.1. System Description and Backgrounds

The integral-augmented canonical system 

with n+1-th order is considered as

x i̇= xi+1,       i=1,2,...,n-1          (1a)

x ṅ=-∑
n

i=1
a i(t)⋅x i+b(t)⋅u(t)+d(t)x

0
=x(0)      (1b)

ż=x 1      z
0=z(0)                        (1c)

y= h⋅x        h=[1 0 ... 0]       (1d)

where x∈R n  is the state variable, and x1 and z 
are the output and its integral, respectively, a i(t) 

and b(t) are the system parameters, d(t)  is 

disturbance, and u(t)  is the control to be 

determined. To completely describe the system 
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(1a)-(1d), the assumption on the boundedness of the 

parameter variations and external disturbances is 

introduced as follows:

Assumption 1: The system parameters and 

external disturbances are bounded as

a i(t) ∈ [a-i   a+i ] for  i=1,2,...,n          (2a)

b( t) ∈ [b -  b +]  b - > 0              (2b)

d( t) ∈ [d -  d +]                  (2c)  

where l- and l+, l=a i, b, and d are the below and 

upper bounds of each parameter.

Let l 0∈ [ l -  l +]  imply each nominal value 

possibly estimated during the modelling process for 

controller design. From Assumption 1, the nominal 

system of (1) can be expressed as

ẋ=Λ⋅x+Γ⋅ν   x 0                           (3a)

ż=x1       z
0                          (3b)

y=h⋅x       (3c) 

where ν is the continuous feedback input having 
the performance data as the component of u(t), and 

the matrices Λ∈R n×n  and Γ∈R n×1 Γ∈R
n×1  are 

as follows:

     Λ=
ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 1 0 ... 0
0 0 1 ... 0
. . . ... .
. . . ... .
. . . ... .
-a01-a

0
2-a

0
3 ...-a

0
n

     
ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

,       

Γ=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0
0
.
.
.
b 0

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

                                      (4)

Only the information on the nominal system 

together with the bounds of the parameter 

variations in (2) is used in the design of the IOVSS 

controller. Using (3), the original system can be 

re-expressed in a compact form as

ẋ=Λ⋅x+Γ⋅[u(t)+e(x,t)]x 0               (5a)

ż=x1        z
0                                   (5b)

y=h⋅x       (5c) 

where e(x,t)  represents for the persistent 

disturbances or lumped uncertainties as

e(x,t)=∑
n

i=1
Δa i(t)⋅x i+Δb(t)⋅u(t)+Δd(t)         (6) 

where

Δa i(t)=(a i (t)-a
0
i)/b

0

Δb(t)=(b(t)-b 0)/b 0

Δ(t)=d(t)/b 0                    (7)

and is bounded due to Assumption 1. This term 

affects robustness and may cause instability and 

difficulty in designing the controller. So, these 

factors should be considered into account while 

designing a controller for practical purposes.

The control u(t)  of the proposed IOVSS is designed 

for the system (5a) with input composing of

u(t)=ν(t)+Δν(t)                            (8)

where ν(t)  and Δν(t)  are designed with aid of 

advanced optimal technique and VSS theory, 

respectively. The objective of this design is to 

stabilize the system (5a) ensuring the prescribed 

optimal performance of ν(t)  against all lumped 

uncertainties. The sense of the optimal is defined in 

the following

Definition 1: Optimality

For a time invariant linear system (3a), a feedback 

control ν=φ(t) ν=φ(t)  is optimal in the sense of 

minimizing the time varying performance index 

J:R n×R×R +→R:

J(x,ν,t)=⌠⌡

∞

0
L(x(t),ν(t),t)dt                 (9)

In order to optimize the control with respect to the 

time varying performance function of (9), we 

describe a Lemma 1 shortly. For the following 

results, define Hamiltonian for p∈Rn  as

H(x,p,ν,t)=L(x,ν,t)+p T⋅(Λ⋅x+Γ⋅ν)          (10)

Let ▽ denote the derivative with respect to x

Lemma 1: Consider (3a) with a performance 

functional (9). It is assumed that a function 

V∈C 2:R n×R +→R  and φ:R n→R φ:R n→R  exist 

such that

11
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V(0,t)=0                        (11a)

V(x,t) > 0,    x∈R n    for  x≠0        (11b)

φ(0)=0                                       (11c)

∂V(x,t)
∂t

+∇V(x,t)⋅(Λx+Γφ(x))<0 

for  x∈R
n
,   x≠0

           

and it is uniformly continuous                 (11d)

∂V(x,t)
∂t

+ min
ν
H(x(t), ∂V(x,t)∂t

,φ(x),t)=0      (11e)

H(x(t), ∂V(x,t)∂t
,φ(x),t)≥0   for  ∈R n      (11f) 

Then, with the feedback control ν(x)=φ(x), the 

solution x( t),  t≥0  of the closed loop system 

ẋ=Λ⋅x+Γ⋅φ(x)  for x0  is asymptotically stable. 
Furthermore, the feedback control ν(x)=φ(x)  

minimize J(x,v,t)  in the sense that

J(x,φ,t)= min
ν
J(x,ν,t)                        (12)

where ν∈U(x)≡{ν(⋅)|ν(⋅) stabilizes x(⋅) 

given  by  (11a)  
 such  that  lim

t→∞
V(x,t)=0}

   

          (13)

and 

J(x,φ,t)=V(x 0,0)                               (14)

Proof: See Appendix 

It should be particularly noted that (11e) is familiar 

with the Hamilton-Jacobi-Belman(HJB) equation 

charactering the optimal control for time-varying 

systems on both finite and infinite interval.

Returning the main problem under discussion, the 

previous VSS's including the optimal VSS do not 

provide the means of guarantying the performance 

pre-designed in the sliding surface because of the 

reaching phase. The reason why the reaching phase 

exists will be briefly discussed for the most popular 

conventional sliding surface S:R n→R  in form of the 

linear combination of the full states as follows[1][2]:

s(x)=∑
n

i=1
c i⋅x i                                 (15)

Since the sliding surface of (15) is geometrically 

defined at the fixed state satisfying s(x)=0  in the 

state space, it can not vary according to the initial 

conditions. Hence for the initial condition such that 

, reaching phase inevitably appears. 

The steps required for removing the reaching phase 

are as follows: The sliding surface should be defin

ed from any given initial condition in the state 

space, and the control should be enabled to establish 

the sliding mode on every point on the 

predetermined sliding surface.

As the first design step, an integral-augmented 

sliding surface is suggested and the advanced 

optimal design technique is presented

2.2. Integral-Augmented Sliding Surface and its 

Optimal Design

Assuming the initial condition of x0  is known, an 

integral-augmented sliding surface s:R n+1→R  to 

solve the reaching phase problems is defined as 

follows: s(x,z)=C
T
⋅x(t)+c 0z(t)

=∑
n

i=1
c i⋅x i(t)+c 0⋅z(t)

         (16)

where z(t)=⌠⌡

t

0
x 1(τ)dτ+z

0
z
0
=-c

-1
0 ∑

n

i=1
c i⋅x

0
i      

                     (17)

c n=1       c i=constant

which is modified from [7][12] by further 

considering the initial condition for the integral state 

in order to cope with the problems of the reaching 

phase. In [7][12], since the initial condition for the 

integral state is not taken into account, i.e., z0=0, 
the reaching phase problems still exist and an 

inevitable overshoot problem may occur in outputs 

because the accumulated integral in the integral 

sliding surface has to be re-regulated to zero in 

steady state. However, the suggested integral 

sliding surface of (16) obviously satisfies

s(x 0,z 0)=0    at  t=0          (18)

for any given initial condition because the integral 

sliding surface (16) is function of a given initial 

condition explicitly. Hence, there is no reaching 

phase, only the controlled system can slide from a 

given initial condition. Using ṡ(x,z)=0 and (3a), the 

equivalent control as the candidate for ν(t)  can be 

obtained as

12
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ν eq(t)=-∑
n

i=1
(c i-1-a

0
i)/b

0
⋅x i

     =C
T
(c i,c 0)⋅x

          (19) 

where
C
T
=[(c 0-a

0
1)/b

0  (c 1-a
0
2)/b

0...

(cn-1-a
0
n)/b

0]
      (20)

and n-th order full sliding dynamics of (16) defined 

from a given initial state to origin can be expressed 

as

x i̇=xi+1, i=1,2,...,n-1            (21a)

x ṅ=-∑
n

i=1
c i-1⋅x i       x

0          (21b)

or in a compact form as

x ṅ=Φ(c i,c 0)⋅x      x
0                (22)

where

     Φ(ci,c0)=
ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0 1 0 ... 0
0 0 1 ... 0
. . . ... .
. . . ... .
. . . ... .
-c00-c

0
1-c

0
2 ...-c

0
n-1

     
ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

                (23) 

which is the reduced n-th order dynamical 

interpretation of the integral-augmented sliding 

surface, i.e. ideal sliding dynamics, therefore its 

solution of (22) becomes the set of the state of the 

integral-augmented sliding surface, so called integral 

manifold[24], and the stability of the integral sliding 

surface directly depends on the stability of the 

sliding dynamics (22). Because of the invariance 

property of the sliding mode against the parameter 

variations and disturbances in the VSS, 

theoretically, the output can be predetermined and 

predicted by using the solution of (22) for any 

given initial condition if the sliding mode is 

guaranteed for the whole trajectory.

Since the pole assignment to (22) is identical to the 

determination of the desired coefficient 

c i,  i=0,1,...,n-1 in (16),  the optimal technique of 

[25] is introduced for the stable choice of ci  by 

rearranging (22) into 

ẋ=Λ⋅x+Γ⋅ν eq( C,x)    x
0                (24) 

where Λ has the relationship of 

Λ=Φ-Γ⋅C(c i,c 0)         (25) 

or 

a0i+1=c i+b
0⋅c+i+1,  i=0,1,...,n-1  (26) 

Since (24) is equal to (3a), the choice of the 

feedback gain in (24) implies the performance 

design for the nominal system. then, the time 

multiplied quadratic performance index J(x,ν eq)  is 

chosen as follows[25]:

J=⌠⌡

∞

0
(t
N
x
T
Qx+γν

2
)dt                 (27)

where Q=Q T∈R n×n≥0  is the weighting matrix, 

ν∈R is the scalar weighting factor for inputs, and 

N is a non negative integer as a time-weighting 

factor. The weighting matrix Q can be chosen as 

Q=W TW            (28)

where the pair (Λ,W) is observable. Kalman 

suggests that (27) could lead to a constant control 

law[26]. As one increases N in (27), the constant 

optimal gain minimizing the time-multiplied 

performance index can improve the transient 

dynamics and is determined by Theorem 1

Theorem 1: The optimal gain matrix C(ci,c0) for 

(16) with respect to (27) is given by

C=
1
γ
Γ
T
∑
N+1

i=1
(Pi⋅Li)⋅L

-1
N+1                   (29)

where Pi  and Li  are the solution of the extended 

algebraic matrix Riccati equations:

ΦTP 1+P 1Φ
T+N!Q=0                (30a)

ΦTP i+1+P i+1Φ
T+P i=0, i=1,2,...,N-1      (30b)

ΦTPN+1+PN+1Φ
T+γCTC=0              (30c)

ΦTLi+LiΦ
T+Li+1=0, i=1,2,...,N       (30d)

ΦTLN+1+LN+1Φ
T+x 0x 0

T

=0              (30e) 

and the final cost becomes 

J F=x
0 TP N+1x

0=tr[PN+1X
0], X 0=x 0x 0

T

        (31) 

Proof: See [25]

For (30a)-(30e) being the necessary condition for 

the minimum, the computation algorithms to find 

the optimal gain is given by Fletcher and Powel[27]. 

It is noted that if N=0, the gain results of 

Theorem 1 coincides with those of the basic optimal 

theory [7] or [28]. Finally the optimal coefficients of 

the integral sliding surface can be determined by 

using the relation as

Φ(c i,c 0)=Λ+Γ⋅C
T(c i,c 0)                      (32)

13
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or 

c i=a
0
i+1-b

0⋅c i+1.i=0,1,...,n-1               (33)

and also the equivalent control of (19) is selected at 

the same time. In [7] as one of the optimal VSS's, 

the whole output may not exhibit the optimal 

performance initially designed in the sliding surface. 

However, in the IOVSS, the optimal performance 

designed in the integral sliding surface with respect 

to the time-weighted performance index (27) by 

means of Theorem 1 can be completely guaranteed 

by solving the reaching phase problems.

As the second design of the stage of 

IOVSS, a control input stabilizing (5) with the 

robustness of the optimal performance resolved in 

the integral sliding surface will be discussed in the 

next.

2.3. Stabilizing Control Input and Stability 

Analysis

To establish the sliding mode on the every point of 

the predetermined integral sliding surface, a 

following class of the feedback control is employed

u(t)=ν eq+Δν                           (34)

where ν eq is the equivalent control directly 

determined according to the design of the integral 

sliding surface and Δν  is the discontinuous term to 

cancel out uncertainties and external disturbances in 

order to maintain the sliding mode on pre-specified 

surface from a given x0  to origin. Also, νeq 
governs the main sliding dynamics to be optimal for 

(27) and Δν  is chosen as

Δν={Ψ o⋅z+∑
n

i=1
Ψ i⋅x i+δ⋅sgn(s)+κ⋅s}         (35)

where Ψ 0={ α 0>0   for  s(x,z)⋅z>0β 0>0   for  s(x,z)⋅z<0
     (36a)

                            

Ψ i=

ꀊ

ꀖ

ꀈ

︳︳︳︳︳︳︳︳

︳︳︳︳︳︳︳︳

α i>

ꀌ

ꀘ

︳︳︳︳︳︳

(a
+
i -a

0
i)+max{ [

(c i-1-a
0
i)(b

0
-b

-
)/b

0
]

,[(c i-1-a
0
i)(b

0
-b

+
)/b

0
]}

b
-

ꀍ

ꀙ

︳︳︳︳︳︳

β i<

ꀌ

ꀘ

︳︳︳︳︳︳

(a
-
i -a

0
i)+min{ [(c i-1-a

0
i)(b

0
-b

-
)/b

0
]

,[(c i-1-a
0
i)(b

0
-b

+
)/b

0
]}

b
-

ꀍ

ꀙ

︳︳︳︳︳︳   
       

for   s(x,z)⋅x i   >  0

for   s(x,z)⋅x i   <  0
    i=1,2,...,n      (36b)

δ={ ζ  > {  d
-/b -    for  s(x,z) > 0}

ξ  < {-d +/b -    for  s(x,z) < 0}         (36c)
κ  >  0                                       (36d)

The fourth term of the right hand side of (35) can 

help for the system to approach more closely to the 

integral sliding surface. The control is designed in 

two steps, i.e. choice of the integral sliding surface 

and discontinuous gain selection in (35) by using 

(36a)-(36d). The former is the performance design 

and the latter is the robustness design. In order to 

posses the robustness of the optimal performance 

against the lumped uncertainties of (6), the control 

input should satisfy the existence condition of the 

sliding mode. In general, the well-known existence 

condition of the sliding mode is 

lim
s→0
s⋅ ṡ  <  0                       (37) 

For the control input such as (34) having the 

continuous part, the rigorous proof for the existence 

condition of the sliding mode is not yet developed. 

In [28], the additional assumption on the lumped 

uncertainties is introduced. The existence of the 

sliding mode for (34) is investigated together the 

stability of the closed loop system through Theorem 

2 without any additional assumption on the 

uncertainties

Theorem 2:  The control strategy (34) stabilizes 

(5a) with property of the sliding mode on the 

integral-augmented sliding surface (16) from a 

given initial condition to origin in (n+1)-th state 

space provided that (22)  is asymptotically stable.

Proof: At an initial point( t=0) and the origin

( t=∞),  the following is satisfied

s(x 0,z 0)=0  and  s(0,0)=0                     (38)

The initial point and origin are included to the 

integral-augmented sliding surface.

Take a Lyapunov candidate function as

V(x,z)=1/2s 2(x,z)         (39)

Differentiating (39) with respect to time lead to

14
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V̇(x,z)= s(x,z)⋅ ṡ(x,z)                         (40)

From (1) and (16), the derivative of s(x,z)  

becomes

ṡ(x,z)=∑
n

i=1
c i-1⋅x i

-∑
n

i=1
a i(t)⋅x i+b(t)⋅u(t)+d(t)

      (41)

From (34) and (35), it follows

ṡ(x,z)=∑
n

i=1
c i-1⋅x i-∑

n

i=1
a
0
i⋅x i+b

0
⋅ν eq

  -∑
n

i=1
Δa i(t)⋅x i-(Δb/b

0
)⋅∑

n

i=1
(c i-1-a

0
i)⋅x i

       -b(t)⋅( ∑
n

i=1
Ψ i⋅x i+Ψ z⋅z(t))

-b(t)⋅δ⋅sgn(s(x,z))+d(t)-b(t)⋅κ⋅s(x,z)

                       (42)

and

ṡ(x,z)=-∑
n

i=1
Δa i(t)⋅x i

-(Δb/b
0
)⋅∑

n

i=1
(c i-1-a

0
i)⋅x i

     -b(t)⋅(∑
n

i=1
Ψ i⋅x i+Ψ z⋅z(t))

-b(t)⋅δ⋅sgn(s(x,z))+d(t)

         

   -b(t)⋅κ⋅s(x,z)                 (43)

and

ṡ(x,z)=-b(t)⋅Ψ0⋅z(t)

        -∑
n

i=1{
Δa i(t)+Δb/b

0

⋅(c i-1-a
0

i)+b(t)⋅Ψ i}⋅x i
        -b(t)⋅δ⋅sgn(s(x,z))+d(t)

        -b(t)⋅κ⋅s(x,z)                (44)

At this point, it is noted that the original control 

problems is converted to the stabilizing problems 

against Δa, Δb, and d(t), which means that the 

robustness problem is separated from the 

performance design. Finally, using the (44) and 

(36a)-(36d), the following equation can be derived

V̇(x,z)= s(x,z)⋅ ṡ(x,z) < -b -⋅κs 2(x,z)          (45)

and represents that V̇( x,z) < 0 for all times and 

completes the proof.

Because of Theorem 2, for the control strategy (34) 

with (16), the controlled system can slide from a 

given initial condition to origin with the ideal 

sliding dynamics (22). Therefore, the optimal output 

previously designed to the ideal sliding dynamics 

(22) by Theorem 1 becomes the real output despite 

of the existence of the parameter variations and 

disturbances by means of the property of the sliding 

mode, which is also one important issue in the area 

of the optimal control. The previous approaches of 

the optimal design of the sliding surface mentioned 

in the introduction basically use the classical 

optimal theory. Moreover, their designed optimal 

performance is not  globally guaranteed because of 

the reaching phase. In the IOVSS algorithm of this 

study, the VSS theory is well combined with the 

advanced optimal control theory in order to take the 

advantages of both approaches for uncertain plants.

To show the explained effectiveness of the 

algorithm, an example will be presented.

III. Simulation Studies

Consider an uncertain following plant:

ẋ( t)=
ꀎ

ꀚ

︳︳︳

0 1 0
0 0 1

1±0.3  2±0.6  3±0.9

ꀏ

ꀛ

︳︳︳

⋅x(t)+
ꀎ

ꀚ

︳︳︳

0
0

5±1.5

ꀏ

ꀛ

︳︳︳⋅u(t)+
ꀎ

ꀚ

︳︳︳

0
0

±70.0

ꀏ

ꀛ

︳︳︳

        

      ż(t)=x1 (t)

      y=x 1(t)                 (46)

where '±'  means the maximum and minimum 

variations of parameters. An initial condition 

x 0=[2 1 0] T for (46) is given. To show the 

robustness of the IOVSS  

표 1  공칭값 과 casei와 case ii의 조건 값

Table 1 Nominal value and conditions for casei  and 

case ii

a1 a2 a3 b d(t)

case i -1.3 -2.6 -3.9 6.5 -70.0

case ii -0.7 -1.4 -2.1 4.5 +70.0

nominal -1.0 -2.0 -3.0 5.0 0.0

15



             전기전자학회 논문지(Journal of IKEEE) Vol. 9. No.2              

(94)

표 2 슬라이딩 면의 최적 계수와 폐루프의 극

Table 2 Optimal coefficients of integral sliding 

surface and its closed loop poles

Algorit

hm
c0 c1 c2 c3

closed 
loop 

eigenval
ues

z0

N=0 158.117 109.258 21.943 1

-15.583,

-3.180 ±
j1.842

-1.521

N=1 131.738 73.302 13.230 1

-3.193,-

5.018 ±j

4.009

-1.213

N=2 108.363 57.7946 11.724 1

-4.064,-

3.830 ±3

.464

-1.175

N=3 96.105 51.710 11.195 1

-4.412,-

3.392 ±j

3.265

-1.193

N=4 90.156 49.385 11.026 1

-4.507-3

.260 ±3.

063

-1.142

N=5 87.951 48.898 11.041 1

-4.534,-

3.253 ±j

2,969

-1.238

convent

ional
-- 20 10 1 0,-10 --

algorithm, the conventional VSS and proposed 

IOVSS with (16) and (34) will be comparatively 

designed for the two cases of the different condition 

on ai(t), b(t), and d(t)  as in Table 1.

The first design step, the weighting matrices, Q 

and γ  in (27) are chosen as 

Q=
ꀎ

ꀚ

︳︳︳

100 0 0
0 20 0
0 0 1

ꀏ

ꀛ

︳︳︳
, γ=0.1                           (47)

Then, by Theorem 1, the optimal coefficients of the 

integral sliding surface can be obtained for 

N=0,1,...,5 and summarized in Table 2 with its 

closed loop eigenvalues 

표 3 제어입력의 스위칭 이득

Table 3  Switching gains for control inputs

VSS z x1 x2 x3 δ κ

conventi

onal

αi --   3.6 26.3  3.8  23.8

--

βi -- -23.6 -2.3 -3.8 -23.8

IOVSS
αi  0.05  6.5  9.2  3.0  23.8

0.2

βi -0.05 -6.5 -9.2 -3.0 -23.8

of the ideal sliding dynamics (22) and the initial 

values for the integral of (17). In turn, the 

switching gain in (35) are chosen as in Table 3 for 

the conventional VSS and IOVSS from the feasible 

set satisfying the inequalities of (36a)-(36d).

The computer simulation studies have been carried 

out using the sampling interval of 2 [msec]. The 

simulation results of the conventional VSS and 

IOVSS are shown in Fig. 1 through Fig. 6. Fig. 1 

shows the outputs of the three states by the 

conventional VSS, x1 is depicted in (a), x2 in (b), 

and x3 in (c) under the two conditions in Table 1. 

As can be seen, all the outputs in each state are 

disturbed as change of the parameter conditions, 

which implies the robustness of the whole output is 

not guaranteed due to the reaching phase. Hence, 

the output can not be predictable. Fig. 2 shows the 

output states when N=0  for the same initial 

conditions and z 0=-1.521 under the two case 

conditions, x1 is depicted in (a), x2 in (b), x3 in (c), 

and z in (d). In spite of the existence of the 

parameter variations and disturbances, the outputs 

in each state are exactly same, which implies that 

complete robustness can be obtained by the IOVSS 

algorithms. Therefore, the output can be predictable. 

The phase trajectories of x3 vs. x2 and the ideal 

sliding surfaces projected to that plane by the 

conventional VSS are shown in Fig. 3. The 

expected reaching phases exist and the trajectories 

are disturbed during the reaching phase. Only after 

touching the sliding surface, the outputs are robust. 

By the IOVSS, the phase trajectories of x3 vs. x2 

and the ideal sliding surfaces projected to that plane 

are shown in Fig. 4. There exists no reaching 

phase, but the controlled system slide from the 

given initial condition to origin because the integral 

sliding surface is defined from the given initial state 
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to origin.

In the IOVSS, the predictability of output 

and the effect of N in (27) to the output is 

investigated. Fig. 5 shows the three states predicted 

by the solutions of the ideal sliding dynamics (22) 

for the given initial conditions as one increases N 

in (27) from 0 to 5. Fig. 6 shows the real state 

outputs by the IOVSS for case i condition. The 

predicted output and real output are exactly equal, 

except little difference in x 3  because of the 

chattering of the input. Thus, not only the output 

itself is predetermined, but the output can be 

precisely predicted. Moreover, by increasing N in 

(27) if the performance when N=0  is not satisfied, 

the output performance can be improved by means 

of the advanced optimal algorithm with the 

time-multiplied performance index. 

From the simulation results, the IOVSS 

algorithm perfectly solves the reaching phase 

problems, so the robustness for the whole trajectory 

is guaranteed, since the optimal performance 

designed by the advanced optimal theory in the 

sliding dynamics is preserved, the prediction of 

output is feasible.

VI. Conclusions

In this paper, the design of the IOVSS is 

presented for the prescribed output control of 

uncertain SISO systems under persistent 

disturbances. This algorithm basically concerns with 

removing the problems of the reaching phase and 

combines with the advanced optimal control theory. 

By means of the integral sliding surface and 

Theorem 2, the reaching phase is completely 

removed, and the integral sliding surface can be 

defined from a given initial state to origin. The 

ideal sliding dynamics of the integral sliding surface 

is obtained in the form of the state equation and 

designed in the sense of the optimal by using the 

advanced optimal control theory in Theorem 1 

reflected in the design of the integral sliding surface 

and equivalent control input. The corresponding 

control input is selected in order to generate the 

sliding mode on the predetermined integral sliding 

surface. As a result, the whole  sliding output from 

a given initial state to origin is completely 

safeguarded against persistent disturbances. 

Moreover the prediction/predetermination of output 

is enabled due to the property of the sliding mode, 

whereas it is difficult to solve the problems of the 

performance robustness in the previous optimal 

VSS's. Through the illustrative example, the 

usefulness of the algorithm is shown. In the IOVSS, 

the advanced optimal theory is effectively 

incorporated to take the advantages of both 

algorithms. Finally, the attractive performance of the 

IOVSS are pointed out in view of no reaching 

phase, complete robustness, output 

prediction/predetermination, separation of the 

performance design and robustness problem.

그림 1 기존 VSS에 의한 상태변수 응답

FIg. 1 State output responses by the conventional VSS

(a) x1 (b) x2 (c) x3 for case i and case ii
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그림 2 제안된 IOVSS에 의한 상태변수 응답

FIg. 2 State output responses by the IOVSS

(a) x1 (b) x2 (c) x3  (d) z for case i and case ii

그림 3 기존 VSS에 의한 투영된 상궤적

Fig. 3 Projected phase trajectories by the 

conventional VSS

그림 4 제안된 IOVSS에의한 투영된 상궤적

Fig. 4 Projected phase trajectories by the IOVSS
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그림 5 제안된 IOVSS의 이상 슬라이딩 동특성으로 

예측된 상태변수 출력

Fig. 5 Predicted state outputs by the ideal sliding 

dynamics of the IOVSS

그림 6 제안된 IOVSS의 상태변수 실제 출력

Fig. 6 Real state outputs by the IOVSS

Appendix: Proof of Lemma 1

Let x( t), t≥0  satisfies (3a), then

V̇(x,t)≡
dV(x,t)
dt

      =
∂V(x,t)
∂t

+∇V(x,t)

⋅(Λx(t)+Γν(t))

        (48)

Hence, it follows from (11d) that

V̇( x, t) <  0,  x(t)≠0,  t≥0               (49)
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Thus, from (11a)-(11d) and (48), it follows that 

V(⋅)  is a Lyapunov function, which proves the 

global asymptotic stability for the solution 

x( t)=0, t≥0  by the uniform continuity of V̇(x,t), 

based on Lyapunov-like Lemma in pp.124-127 of 

[29]. Consequently, x(t)→0  as t→∞ for all initial 

condition x0. Equation (48) implies that 

- V̇( x, t)+
∂V(x,t)
∂t

+∇V(x,t)⋅(Λx(t)+Γν(t))=0

              (50)

and hence, by (11e)

L(x,ν,t)=- V̇(x,t)+L(x,ν,t)+
∂V(x,t)
∂t

+∇V(x,t)⋅(Λx(t)+Γν(t))

          (51)

Integrating over [0  t] leads to

⌠
⌡

t

0
L(x(ω),ν,ω)dω=-V(x,t)+V(x

0
,0)             (52)

Now, letting t→∞ and noting that V(x,t)→0  yields 

(13). To prove (14), let ν(⋅)∈U(x), and let x(⋅)  

be the solution to (3a). Then, using (51) and the 

fact that ν(⋅)∈U(x 0), along with (11f) and (13), 

one can obtain

J(x,v(∙))=⌠⌡

∞

0

  dt

     = - lim
t→∞
V(x,t)+V(x

0
,0)

+⌠⌡

∞

0 {H(x,∇V(x,t),ν,t)+
∂V(x,t)
∂t }

        ≥V(x 0,0)

        =J(x 0,φ(⋅))       (53)

which yields (14).
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