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A Highly Robust Integral Optimal Variable
Structure System
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Abstract

In this paper, a design of an integral augmented optimal variable structure system(IOVSS) is presented for
the prescribed output control of uncertain SISO systems under persistent disturbances. This algorithm aims at
removing the problems of the reaching phase by incorporating advanced optimal control theory. By means of
an integral sliding surface, the reaching phase is completely removed, and the integral sliding surface can be
defined from a given initial state to origin without any reaching phase. The ideal sliding dynamics of the
integral sliding surface is obtained in the form of the state equation and is designed in an optimal sense by
targeting the design of the integral sliding surface and equivalent control input. The corresponding control
input is selected in order to generate the sliding mode on the predetermined integral sliding surface. As a
result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent
disturbances. Moreover the prediction /predetermination of output is enabled, which helps in improving the
performance over previously implemented VSS’s. Through an illustrative example, the usefulness of the
algorithm is shown.
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|. Introduction The  problem of controlling  uncertain

dynamical systems under parameter variations and
extraneous disturbances has been studied for a long
* arlera Aol A% o5 BRI time[1]-[5]. The theory of the variable structure
system(VSS) or sliding mode control(SMC) can

(ERI,  Dept. O.f L(.)ntr.. & Instrum. Eng, provide the effective means to solve this
Gyeongsang National University)
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problem[1][2]. One of its essential advantages is the
capacity of the controlled system to counteract
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variations of parameters and external disturbances
in the sliding mode on the sliding surface (D=0
The properly designed sliding surface can match
desired output dynamics and performances.
the

assignment[8][9],

Many
design  algorithms linear(optimal
control[6][7],

geometric

including

eigenstructure
approach[10],  differential ~ geometric
approach[11]), and nonlinear techniques have been
reported. Moreover, an integral action also has
augmented by the two groups[71[12]-[14]. The first
strategy suggests the state
performance[7][12][13]
disturbances
VSS,

chattering problems by filtering the discontinuous

steady
the
implementation of the

improving

against external
in the digital
and the other one aims at reducing the

input[14]. Futhermore, with respect to the optimal
VSS, augmentation strategies include the
optimal design of the sliding surface[6]1[71[9] and the
optimization of the discontinuous VSS itself[11[16].
Unfortunately, most of the VSS’s have the
reaching phase which called the transient period

other

which is the period till the representative point first
touches the sliding surface from the beginning.
During this reaching phase, the controlled systems
may be sensitive to the parameter variations and
external disturbances
not realized[17]. And
in the

output based on the above mentioned strategies.

because the sliding mode is
it is difficult to improve the
performance sliding surface for the real
Moreover, introducing the integral action to the VSS
without removing the reaching phase can inevitably
cause the overshoot problems.

In the context of already established research
work on VSS, very few studies deal with the
problem of reaching phase. One mitigation strategy
is the use of the high-gain feedback[18]. But, it has
also some drawbacks for example sensitivity to the
unmodelled dynamics and actuator saturation[17].
The adaptive rotating or shifting of the sliding
surface is suggested to reduce the reaching phase
[21(19], the
connected in segments to the origin from a given
But these
different techniques and segmented sliding surface

problems in and sliding  surface

initial condition is also suggested[20].
are applicable to only second order systems and

[21], the
exponential term is added to the conventional linear

their outputs are not predictable. In
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sliding surface is order to make g¢pH=( at ;=(.
But,
nonlinear.

its resultant sliding dynamics becomes

In this paper, an integral augmented optimal
variables structure system(IOVSS) is suggested for
the control of uncertain n-th order SISO systems
with the predetermination/prediction of output. The
the

augmentation of an integral with special non zero

reaching phase is completely removed by
initial value to the conventional sliding surface.
Using the advanced optimal technique by minimizing
the index[25], the

stationary linear sliding dynamics are obtained in

time-weighted  performance
the form of the state equation that also ensures the
predetermination of output. A corresponding control
is selected to completely guarantee the sliding mode
on the every point of the predetermined integral
sliding surface for protecting the designed optimal
output from parameter variations and disturbances.
By removing reaching phase and optimizing the
the
advantages of the algorithm are discussed including

VSS based on the advanced optimal theory,

the predetermination of output. Finally an example
is presented to show the effectiveness of the
algorithm in comparison to typical VSS having the
conventional linear sliding surface.

II. Integral Optimal Variable Structure
Systems

2.1. System Description and Backgrounds
The integral-augmented canonical system
with j,41-th order is considered as

X=X, i=1,2,...,n—1 (1a)
P ;"ai(» KD D +d D =H0) (D)
-2=xl ZOZZ(O) (IC)
y=rh-x n=[10 ... 0] (1d)

where yepn is the state variable, and x and z
aid
is
be

system

are the output and its integral, respectively,

and () G

disturbance, to

are the system parameters,

u(d) the
determined. To completely describe the

and is control
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(1a)-(1d), the assumption on the boundedness of the
parameter variations and external disturbances is

introduced as follows:

Assumption 1: The system parameters and
external disturbances are bounded as

aid € [a; af] for i=1,2,...,n (2a)
o) e [67 671 6750 (2b)
d(t) € [d= d7] (20)

where [~ and [, =g, p and gare the below and
upper bounds of each parameter.

Let j0%e[7- %]
possibly estimated during the modelling process for

imply each nominal value

controller design. From Assumption 1, the nominal
system of (1) can be expressed as

x=A-x+Iv x° (3a)
z=x, 20 (3b)
y=h-x (3c)
where ), is the continuous feedback input having

the performance data as the component of (D) and

the matrices gep”” and [ep» [ER 1 are

as follows:

0
0
= 4)
b'o
Only the information on the nominal system
together with the bounds of the parameter

variations in (2) is used in the design of the IOVSS
controller. Using (3), the original system can be

re-expressed in a compact form as

x=A-x+ [ D)+elx, Dx (5a)
z=x; 2° (5b)
y=h-x (5¢)
where Ax,f) represents for the persistent
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disturbances or lumped uncertainties as

elx, = Zﬂlda (D) x4+ ABCD - (D) +Ad(D ®)

where
da (D=(a;(h—aD/b°
A =(KH—b"/b°

A)=dd/b° @

and is bounded due to Assumption 1. This term
affects robustness and may cause instability and
difficulty the controller. So,
factors should be considered into account while

in designing these
designing a controller for practical purposes.
The control D of the proposed IOVSS is designed
for the system (5a) with input composing of

u( D =u(t) + A1) (8)

where () and gyp are designed with aid of
optimal and VSS
The objective of this design

advanced technique theory,

respectively. is to
stabilize the system (5a) ensuring the prescribed
U

uncertainties. The sense of the optimal is defined in

optimal performance of against all lumped

the following

Definition 1: Optimality
For a time invariant linear system (3a), a feedback
control  y=g(§ y=¢(§) is optimal in the sense of

minimizing the time varying performance index

JFR"™RxR >R’

T, )= [ LG, 40, s ©

In order to optimize the control with respect to the
time 9),
describe a Lemma 1 shortly. For the following

varying performance function of we

results, define Hamiltonian for pep” as

Hex, oy, ) =L, v, ) +p 7 - (A-x+T+ ) (10)

Let <7 denote the derivative with respect to x

Lemma 1: Consider (3a) with a performance
functional (9). It is assumed that a function

VECZIRWXR_F*)R and ¢_Rn*>R ¢:RW*>R exist
such that
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0,)=0 (11a)
Wx, 550, x€R" for x#+0 (11b)
#0)=0 (11c)
VLD 4 Y, by - A+ TR0
for x€R”, x#+0

and it is uniformly continuous (11d)
OWx, A | min oW, 1) _

o T, b(x(t), Py ,¢(x),t)_o (11e)
F’(M,%ﬂﬁ(x),t)zo for €R” (11)

Then, with the feedback control
x(H, =0
x=A-x+T- §x) for oD is asymptotically stable.

Ux)=d(x), the

solution of the closed loop system

Furthermore, the feedback control Ux) = ¢(x)
minimize ](x v t) in the sense that
Jox g, =0, (12)

where ve U)={ A +) stabilizes x( )
given by (1la)
such that lim Wx, =0}
500
(13)
and
T, )= WVx",0) (14)

Proof: See Appendix

It should be particularly noted that (1le) is familiar
with the Hamilton-Jacobi-Belman(H]JB)
charactering the optimal control for time-varying

equation

systems on both finite and infinite interval.

Returning the main problem under discussion, the
previous VSS’s including the optimal VSS do not
provide the means of guarantying the performance
pre—designed in the sliding surface because of the
reaching phase. The reason why the reaching phase
exists will be briefly discussed for the most popular
conventional sliding surface ¢ p»p in form of the
linear combination of the full states as follows[1][2]:

)= Zé}cyx,-

Since the sliding surface of (15) is geometrically

(15)

defined at the fixed state satisfying ¢(x)=( in the

== X|(Journal of IKEEE) Vol. 9. No.2

state space, it can not vary according to the initial
conditions. Hence for the initial condition such that

, reaching phase inevitably appears.
The steps required for removing the reaching phase
are as follows: The sliding surface should be defin
ed from any given initial condition in the state
space, and the control should be enabled to establish
the the

predetermined sliding surface.

sliding mode on every point on

As the first design step, an integral-augmented

sliding surface is suggested and the advanced

optimal design technique is presented

2.2. Integral-Augmented Sliding Surface and its
Optimal Design
Assuming the initial condition of xO is known, an

sR"'SR to
solve the reaching phase problems is defined as

integral-augmented sliding surface

follows: (5,2=CT D +cd (16)
= ;Cl"xl'(l‘)_FCO 'Z(t)
where z(t)=ftx (Ddr+2°2"=—c,! ; c; 2
0 1 0 ZZ; i i
17)
c,=1 ¢ ;= constant
which is modified from [71[12] by further

considering the initial condition for the integral state
in order to cope with the problems of the reaching
phase. In [7][12], since the initial condition for the

integral state is not taken into account, i.e., 20=0,
the reaching phase problems still exist and an
inevitable overshoot problem may occur in outputs
in the
sliding surface has to be re-regulated to zero in
the
sliding surface of (16) obviously satisfies

s(x%29=0 a t=0 18)
for any given initial condition because the integral

because the accumulated integral integral

steady state. However, suggested integral

sliding surface (16) is function of a given initial

condition explicitly. Hence, there is no reaching

phase, only the controlled system can slide from a
given initial condition. Using “g(y,z)=( and (3a), the
equivalent control as the candidate for W) can be
obtained as
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s N
qu(t)zf Z;(Cl_l;ﬂl)/b X (19)
= CT(CZ-,CO) - x
where F:[ (co—a))/B" (c;—a)/P ...
(Cn—l _aoy)/bo
and n-th order full sliding dynamics of (16) defined

(20)

from a given initial state to origin can be expressed

as
Xi=%41, i=1,2,...,n—1 (21a)
- n
xX,= Zci,l X % (21b)
or in a compact form as
X=0qc;cp) % x° (22)
where
010..0
00 1..0
@) (23)
44 4. <4n
which is the reduced n-th order dynamical
interpretation of the integral-augmented sliding
surface, i.e. ideal sliding dynamics, therefore its

solution of (22) becomes the set of the state of the
integral-augmented sliding surface, so called integral
manifold[24], and the stability of the integral sliding
surface directly depends on the stability of the
(22).
property of the sliding mode against the parameter
the VSS,
theoretically, the output can be predetermined and

sliding dynamics Because of the invariance

variations and  disturbances in
predicted by using the solution of (22) for any
the

guaranteed for the whole trajectory.

given initial condition if sliding mode is

Since the pole assignment to (22) is identical to the
of the
¢; i=0,1,...,n—1 in (16), the optimal technique of

determination desired coefficient
[25] is introduced for the stable choice of ¢; by

rearranging (22) into

x=A-x+T v (Cx) (24)
where /| has the relationship of

A=0-T"- dc;,cy) (25)
or

dh=cAb’ - ctitl, i=0,1,...,n—1 (26)
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Since (24)
feedback gain

(3a), the choice of the
implies

is equal to
(24)
design for the nominal system. then,

in the performance
the

multiplied quadratic performance index ](?C,Veq) is

time

chosen as follows[25]:

J= fom(tNx TQet+n)at @27
where Q=QTeR"™>( is the weighting matrix,
veR is the scalar weighting factor for inputs, and
Nis a non negative integer as a time-weighting
factor. The weighting matrix Q can be chosen as

Q=wTw (28)
where the (A, W Kalman
suggests that (27) could lead to a constant control

pair is observable.
law[26]. As one increases py in (27), the constant
the

improve

time-multiplied
the
dynamics and is determined by Theorem 1

optimal gain  minimizing

performance index can transient

Theorem 1: The optimal gain matrix aCi,Co) for

(16) with respect to (27) is given by
— 1 TN+1 o
C=*7/F Z;(Pi L) Lyy (29)

where P; and [,; are the solution of the extended

algebraic matrix Riccati equations:

0P, +P,0T+N Q=0 (30a)
QP P, O0T+P =0, i=1,2,...,N—1 (30b)
OTPyi +Pyi @ T+yCTC=0 (30¢)
OLALOT™+L, =0, i=12,...,N (30d)
OTL oy +L iy @ T+5"%" =0 (30e)
and the final cost becomes

]F=XOTPN+19€0:”{PN+1XO], XO:XO?COT @D

Proof: See [25]

For (30a)-(30e) being the necessary condition for
the minimum, the computation algorithms to find
the optimal gain is given by Fletcher and Powel[27].
It is noted that if pN=(,

Theorem 1 coincides with those of the basic optimal

the gain results of

theory [7] or [28]. Finally the optimal coefficients of
the integral sliding surface can be determined by
using the relation as

@c;,cp) :A+F-?T(cl-,co) (32)
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or

c;=ab =" ¢i11.i=0,1,...,n—1 (33)
and also the equivalent control of (19) is selected at
the same time. In [7] as one of the optimal VSS's,
the whole output may not exhibit the optimal
performance initially designed in the sliding surface.
However, in the IOVSS, the optimal performance
designed in the integral sliding surface with respect
to the time-weighted performance index (27) by
means of Theorem 1 can be completely guaranteed
by solving the reaching phase problems.

As the second design of the stage of
IOVSS, (5) with the
robustness of the optimal performance resolved in

a control input stabilizing

the integral sliding surface will be discussed in the
next.

2.3.
Analysis

Stabilizing Control Input and Stability

To establish the sliding mode on the every point of
the
following class of the feedback control is employed

U=y o+ Ay (34)
where Va directly

predetermined integral sliding surface, a

is the equivalent control

determined according to the design of the integral
sliding surface and Ay is the discontinuous term to
cancel out uncertainties and external disturbances in

order to maintain the sliding mode on pre-specified

surface from a given xU to origin. Also, Y
governs the main sliding dynamics to be optimal for

(27) and Ay is chosen as

Av={¥fg-z+zn‘1¥fi-xl~+8~s,gn(s)+z-s} (35)
(a0 for s(x,2) - 20
where WU_{/32>0 for s(x,z2) - 2€0 (362)
T+ [(ciy *d[b(bofbf)/bo]]
| (a;—a) m[,[(ci,lfao)(bo*bﬂ/bo]
! b
" (af—ao)—l—m'n{ [(Ci—l_a%)(bo_bi)/bo]}
Y Y (i =)0 —51)/b"]

b

7| M Aeks| =2 X[(Journal of IKEEE) Vol. 9. No.2

foo sx,2)-x; > 0

— 36b

for sx,2)-x; < 0 1=1.2,....m (36)

s=l ¢ oL d /o™ for s(x2) > 0} (360)
& A{=d"/b”  for s(x,2) <0}

x >0 (36d)

The fourth term of the right hand side of (35) can
help for the system to approach more closely to the
integral sliding surface. The control is designed in
two steps, i.e. choice of the integral sliding surface
and discontinuous gain selection in (35) by using
(36a)-(36d). The former is the performance design
and the latter is the robustness design. In order to
posses the robustness of the optimal performance
against the lumped uncertainties of (6), the control
input should satisfy the existence condition of the
sliding mode. In general, the well-known existence
condition of the sliding mode is

lirz]ls- s <0 3D

(34) having the
continuous part, the rigorous proof for the existence

For the control input such as
condition of the sliding mode is not yet developed.
In [28], the additional assumption on the lumped
uncertainties is introduced. The existence of the
sliding mode for (34) is investigated together the
stability of the closed loop system through Theorem
2 without additional the

uncertainties

any assumption on

Theorem 2: The control strategy (34) stabilizes
(5a) with property of the sliding mode on the
integral-augmented sliding surface (16) from a
given initial condition to origin in (n+l)-th state
space provided that (22) is asymptotically stable.
Proof: At an initial point( /=) and the origin
( t=co), the following is satisfied

$(x%2%=0 and £0,0)=0 (38)

The initial point and origin are included to the
integral-augmented sliding surface.
Take a Lyapunov candidate function as

Wx, 2)=1/25%(x, 2) (39)

Differentiating (39) with respect to time lead to
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(40)
s(x, 2)

W, 2) = s(x@) - 's(x,2)
From (1) and (16),
becomes

the derivative of

's(x,z)=zic,-,1 X (41)

- anal(t) cx 0D WD +dD)

From (34) and (35), it follows

.s(x’z):;ncifl X Znidg '-x,"f'bo Vg
— 2340 (b - ~(AB) - 3(ei—a) -,

— K -(anwi-x,—-l—qu-z(t))
—D 0 san(s(x,2)+d(H—H1) - x - s(x,2)
(42)

and
(x, 2) =—Zﬂlda D -x;
— (/B - anui,l—aﬂ) %

— K1) -(il%-xﬁgfz-z(t))
—UD - 6+ sen(s(x, 2)) +d)

—HKD - x-5(x,2) (43)

and

S(x,2)=—b0) - Ty - 2D
& Aa (D+4b/b")
’Zi{ (e —a)+ud - W{} ¥

— (1) - 0 sgn(s(x, 2) +d(D

— ) - x - s(x,2) (44)

At this point, it is noted that the original control
problems is converted to the stabilizing problems
against da, b, and D which means that the
separated the
using the (44) and
(36a)-(36d), the following equation can be derived

N, 2) =s(2) - s(x,2< —b~ ~x5%x,2 (45)

robustness  problem = is from

performance design. Finally,

and represents that "y, z)¢(for all times and
completes the proof.
Because of Theorem 2, for the control strategy (34)

with (16), the controlled system can slide from a

15

given initial condition to origin with the ideal
sliding dynamics (22). Therefore, the optimal output
previously designed to the ideal sliding dynamics
(22) by Theorem 1 becomes the real output despite
of the existence of the parameter variations and
disturbances by means of the property of the sliding
mode, which is also one important issue in the area
of the optimal control. The previous approaches of
the optimal design of the sliding surface mentioned
the the

optimal their designed optimal

in introduction basically use classical
theory. Moreover,
performance is not globally guaranteed because of
the reaching phase. In the IOVSS algorithm of this
study, the VSS theory is well combined with the
advanced optimal control theory in order to take the

advantages of both approaches for uncertain plants.

To show the explained effectiveness of the
algorithm, an example will be presented.
lll. Simulation Studies
Consider an uncertain following plant:
. 0 1 0
x(D= 0 0 1
1+0.3  2+#0.6 3+0.9
0 0
cx(HD+] 0 |-uH+| O
5£1.5 £70.0
A =x0)
y=x,(9 (46)
where ‘41’ means the maximum and minimum
variations of parameters. An initial condition
20=[210]T for (46) is given. To show the

robustness of the IOVSS

X1 A% B Casezs)’]' case Zlg’] =1 %
Table 1 Nominal value and conditions for ;e; and

case 11
@ @ @ b Q)
case 1 | -1.3 -2.6 -39 6.5 -70.0
case ii | -0.7 -14 -2.1 45 +70.0
nominal | -1.0 -2.0 -3.0 5.0 0.0
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¥ 2 &¥told We HA Age) HFze] = Table 3 Switching gains for control inputs
Table 2 Optimal coefficients of integral sliding VsS
. zZ X1 X9 X3 ) X
surface and its closed loop poles
) closed conventi | %| 36(263 | 38| 238
Algorit loop -
m | 9 | @ | @ | &cigenvall 2 onal | gl | 936| 23| 38 |-238
ues
~15.583, | 005 65| 92| 30| 238
—(| 158.117{109.258| 21.943 | 1 |-3.180 +|-1.521 I0VSS 0.2
i1.842 B3;170.05| 65| -92 | -3.0 | -23.8
-3.193,-
—1131.738] 73.302 | 13.230| 1 |5.018 +j|-1.213 of the ideal shdm.g dynamics (22) and the initial
values for the integral of (17). In turn, the
4.009 switching gain in (35) are chosen as in Table 3 for
-4.064,- the conventional VSS and IOVSS from the feasible
| N=0|108363|57.7946 | 11.724 | 1 |3.830 +3|-1.175 set satisfying the inequalities of (36a)-(36d).
= The computer simulation studies have been carried
__.': 742134‘127 ogt usi'ng the sampling interval o.f 2 [ msec]- The
’ simulation results of the conventional VSS and
N=3 96.105 | 51.710 | 11.195| 1 |3.392 +;j|~-1.193 IOVSS are shown in Fig. 1 through Fig. 6. Fig. 1
3.965 shows the outputs of the three states by the
~4.507-3 conventional VSS,  is depicted in (a), xy 0 (b),
=4 90156 49385 11026 1 260 i3 71142 and X3 il’l (C) under the two COHditiOl’lS iIl Table 1.
063 As can be seen, all the outputs in each state are
1534 disturbed as change of the parameter conditions,
which implies the robustness of the whole output is
N=b5| 87.951 | 48.898 |11.041| 1 |3.253 +j|-1.238 not guaranteed due to the reaching phase. Hence,
2,969 the output can not be predictable. Fig. 2 shows the
convent output states when pN=( for the same initial
ional o 20 N N conditions and ;0=—159] under the two case
. _ conditions, y, is depicted in (a), x, 0 (b), ¥y D (c),
algorithm, the conventional VSS and proposed

IOVSS with (16) and (34) will be comparatively
designed for the two cases of the different condition

on ai(t) b(l‘)* and d(lf) as in Table 1.

The first design step, the weighting matrices, Q
and y in (27) are chosen as
100 0 0
Q=0 2 0| »=0.1 4
0 01
Then, by Theorem 1, the optimal coefficients of the
integral sliding surface can be obtained for

N=0,1,....5 and summarized in Table 2 with its
closed loop eigenvalues

(

EE R EREERSOE

o]

[oX
Jt

and  in (d). In spite of the existence of the
parameter variations and disturbances, the outputs
in each state are exactly same, which implies that
complete robustness can be obtained by the IOVSS
algorithms. Therefore, the output can be predictable.
The phase trajectories of x, vs. y, and the ideal
surfaces projected to that plane by the
VSS shown in Fig. 3. The
expected reaching phases exist and the trajectories

sliding
conventional are
are disturbed during the reaching phase. Only after
touching the sliding surface, the outputs are robust.
By the IOVSS, the phase trajectories of X3 VS xy
and the ideal sliding surfaces projected to that plane
are shown in Fig. 4. There exists no reaching
phase, but the controlled system slide from the
given initial condition to origin because the integral
sliding surface is defined from the given initial state
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to origin.

In the IOVSS, the predictability of output
and the effect of v in (27) to the output is
investigated. Fig. 5 shows the three states predicted
by the solutions of the ideal sliding dynamics (22)
for the given initial conditions as one increases pN
in (27) from () to 5 Fig. 6 shows the real state
outputs by the IOVSS for case i condition. The
predicted output and real output are exactly equal,

except little difference in x5 because of the
chattering of the input. Thus, not only the output
itself

precisely predicted. Moreover, by increasing p in

is predetermined, but the output can be
(27) if the performance when N=() is not satisfied,
the output performance can be improved by means
of the optimal algorithm with the
time-multiplied performance index.

From the simulation results, the IOVSS
algorithm  perfectly the reaching phase
problems, so the robustness for the whole trajectory
guaranteed, the optimal performance
designed by the advanced optimal theory in the
sliding dynamics is preserved, the prediction of
output is feasible.

advanced

solves

is since

V1. Conclusions

In this paper, the design of the IOVSS is
presented for the prescribed output control of
SISO systems under persistent
disturbances. This algorithm basically concerns with

uncertain

removing the problems of the reaching phase and
combines with the advanced optimal control theory.
By means of the integral sliding surface and
Theorem 2, the reaching phase completely
removed, and the integral sliding surface can be
defined from a given initial state to origin. The

is

ideal sliding dynamics of the integral sliding surface
is obtained in the form of the state equation and
designed in the sense of the optimal by using the
advanced optimal control theory in Theorem 1
reflected in the design of the integral sliding surface
and equivalent control input. The corresponding
control input is selected in order to generate the
sliding mode on the predetermined integral sliding
surface. As a result, the whole sliding output from
a given to origin
safeguarded against persistent
Moreover the prediction/predetermination of output

initial ~state is completely

disturbances.
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is enabled due to the property of the sliding mode,
whereas it is difficult to solve the problems of the
in the previous
illustrative  example,

performance robustness optimal
VSS's.  Through the the
usefulness of the algorithm is shown. In the IOVSS,
the optimal effectively
incorporated take the of both
algorithms. Finally, the attractive performance of the

advanced theory is

to advantages

IOVSS are pointed out in view of no reaching

phase, complete robustness, output
prediction/predetermination, separation of the
performance design and robustness problem.
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Appendix: Proof of Lemma 1

Let x(#), t>() satisfies (3a), then
et

=MD 4 oy,
(A +IUD)

(48)

Hence, it follows from (11d) that

Wx, 1) <0 x(D*0, =0 (49)
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Thus, from (1la)-(11d) and (48), it follows that
W) is a Lyapunov function, which proves the
stability  for the solution

global  asymptotic

x(H=0,
based on Lyapunov-like Lemma in pp.124-127 of

x(H—0 as
condition 0. Equation (48) implies that

t>(0 by the uniform continuity of "y, 7

[29]. Consequently, t—oo for all initial

— W, 1) +M£,_tl (50)
+ VW, 1) - (Ax(H+IUH)) =0
and hence, by (1le)
Ly, )=—Wx, ) + L0, ) +M5_§,ﬁ (51)
+v W, 1) - (M) +ITUD)
Integrating over [ 4 leads to
fot LX), v, do=—Wx, D+ Vx°,0) (52)

Now, letting z->co and noting that Wx, D0 yields
(13). To prove (14), let ( .)e{[x), and let x(.)
be the solution to (3a). Then, using (51) and the

fact that ,( .)e{{x0), along with (11f) and (13),
one can obtain

o~ Nx )+ Lw,d
Tl = [ 1+ VW by d
< (AdD+HTUD)
= —lim Wx )+ ", 0)

+f0m{H(x,vV(x, D,v, ¢)+M£,_tz}

>WMx",0)
=Jx", 4 +)) (53)
which yields (14).
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