• Title/Summary/Keyword: Unbalanced Mass

Search Result 83, Processing Time 0.028 seconds

The Effect of Food Habits in the Obesity of Middle School Girls in Inchon Area (인천지역 여자 중학생의 식습관이 비만에 미치는 영향)

  • 정미영;우경자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 1997
  • The 297 middle school girls in Inchon were devided into three groups according to body mass index(BMI), the under weight group, the normal weight group and obese group to find out relationship between their food habits, food preference, and obesity. The average height and weight are 159.40cm, 67.02kg for obese group, 158.17cm, 39.11kg for under weight group, 156.93cm, 53.78kg for normal weight group. Obese group feels that they are healthy and fat, and their parents are fat also than the other groups. Obese group took more exercise. Total Food habits scores of obese group were lower than the other two groups. In terms of supper, bedtime-smack, unbalanced diet, balanced intake of five basic food groups obese group had lower scores. Especially, intake of carbohydrate, protein, milk group were irregular. There is no significant different in size of meal, overeating eating speed. The preferences of fast food, instant food, high caloric density food were lower in obese group than in the other two groups. The mother of obese group prepared meals according to food composition and prepared little snakes.

  • PDF

A Study on Highly Efficient Organic Electroluminescent Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2003
  • In order to improve the device performances of organic electroluminescent devices (OELDs), the efficiency of carrier injections into the organic layers from electrodes and the balance of injected carrier densities in the emission region are critical factors. Especially, energy barriers, which exist at the interfaces between electrodes and organic layers, interrupt carrier injections, which lead to unbalanced carrier densities. In this study, ${\alpha}-septithiophene$ (${\alpha}$-7T), as a buffer layer, and composite cathode composed of Al and CsF were formed to improve hole and electron injections, respectively. The orientations of ${\alpha}$-7T molecules were adjusted using the simple rubbing method and the mass ratio of CsF was varied from 1 to 10 wt%. Upon investigation of we believe that the 3 wt% mass ratio of CsF and the horizontal orientation of ${\alpha}$-7T molecules are the optimized conditions for achieving better the performance of OELDs. Device with the horizontally oriented 20 nm thick ${\alpha}$-7T layer and composite cathode shows a turn-on voltage of 7V and luminance of 172 cd/$m^2$ at 4 mA/$cm^2$.

Development of Vibration Compensator for Vertical Vibration Damping of Ships (선박의 수직방향 진동 감쇠를 위한 진동보상기의 개발)

  • Jung, Min Je;Kim, Tae Ok;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 2020
  • The aim of this study is to develop a vertical vibration compensator that attenuates the vertical vibration of ships. The vibration compensator was designed according to the principle of generating vertical excitation forces by rotating two eccentric bodies of the same mass in opposite directions at the same rotational speed. In addition, the structural stability was analyzed using the finite element method. The maximum stress in the drive shaft was 95.6 MPa, which was approximately 35% of the allowable stress of the shaft material (SM45C, 270 MPa). The acceleration signals of the vibrator compensator body and the testbed were determined to evaluate the efficiency of the vibration compensator and the designed excitation forces. Subsequently, the excitation forces were estimated based on the relationship between force and acceleration. The estimated results were very close to the theoretical values with an error of less than 3%.

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

Static Balancing of Laminated Rotor Blade by Lab-view (Lab-view를 이용한 적층 블레이드의 정적 밸런싱)

  • Kim, K.S.;Kong, J.H.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.391-394
    • /
    • 2009
  • Asymmetrical and unbalanced features such as rotor blade of helicopter, actuator of hard-disk in personal computer are usually manufactured with composite materials. In this case, mass distributions and center of gravity of the parts are important because of their static balancing. Therefore in the manufacturing processes, it is needed to check out the exact data of weight and gravity center. In this study, it has been studied experimentally the balancing of laminated rotor blade by using multiple-point weighing method and lab-view system.

  • PDF

The Effect of Balance Weight on the Lubrication and Friction Characteristics of Crankshaft System (크랭크샤프트계의 윤활 및 마찰 특성에 미치는 밸런스 웨이트의 영향)

  • Jo, Myeong-Rae;O, Dae-Yun;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1585-1590
    • /
    • 2002
  • This paper reports on the balance weight effect on the lubrication and friction characteristics of crankshaft system. To determine the main bearing loads, the crankshaft was treated as statically determinate system. Four and eight-balance weight crankshafts were considered, and minimum oil film thickness and friction loss were calculated. The main bearing loads were increased in the four-balance shaft due to the increasing of unbalanced rotating mass at No. 1 and 3 main bearing sides. The minimum oil film thickness of four-balance shaft became thinner than eight-balance, and friction loss was increased.

Observer-based Controller Design of a Magnetic Bearing System (외란관측기에 기초한 자기베어링시스템의 제어기 설계)

  • 송상호;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Cho, Eun-Hyoung;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.994-999
    • /
    • 2002
  • The Pendulum Automatic Dynamic Balancer is a device to reduce the unbalanced mass of rotors. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system including the Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. And the perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. Furthermore, in order to confirm the stability, the time responses for the system are computed from the nonlinear equations of motion.

  • PDF

Implementation of an Adjustment System with Load Cells for Unbalanced Mass-Distribution of Low-Speed Rotating Bodies (로드셀을 이용한 저속 회전체의 불균일 질량 보정 시스템 구현)

  • Kim, Jung-Su;Park, Mun-Soo;Park, Min-Ho;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1791-1792
    • /
    • 2006
  • 이 논문에서는 저속 회전체의 불균일 질량측정을 위한 새로운 신호처리 방법을 제안하고 이를 이용한 자동차 타이어의 보정(balancing) 방법에 관해 설명한다. 타이어를 포함한 시스템의 동력학 모델을 기반으로 타이어의 불균일 질량에 의해 발생되는 진동과 이로 인해 로드셀에 작용하는 힘의 관계식을 유도하고, 센서의 측정계수(scale factor)를 포함한 매개변수를 실험 데이터로부터 계산한다. 또한, 기존 방법과 달리 불균일 질량의 크기와 위치를 정확하고 효율적으로 측정할 수 있는 방법을 소형 마이크로 프로세서를 이용하여 구현하고 실험을 통해 그 성능을 검증한다.

  • PDF