• Title/Summary/Keyword: Unbalance properties

Search Result 46, Processing Time 0.028 seconds

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Error-compensating Techniques in 3-Point Weighing Method to Measure Unbalance Properties (3점 방식 불평형량 측정법에서의 오차보상 기법)

  • Lee, Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.42-49
    • /
    • 2006
  • In this paper error-compensating techniques in three-point weighing method to precisely measure unbalance properties such as center of gravity and unbalance moment. In the conventional static methods, 1) fixture-errors, 2) effects of the contact between the fixture and the load scales, and 3) side effect due to the lateral frictional forces acting on the contact points between the fixture and the load scales are the major factors that lead to measurement errors. The proposed error-compensating method perfectly eliminates both the fixture-error and the contact-error simultaneously by manipulating the three measured reaction forces at three different angular locations. Also the friction-error is calibrated by comparing the sum of three reactions with the actual mass of the specimen. A set of measurement is performed using the same measuring system as Lee's, and a comparison of the results from the convectional, Lee's, and the proposed method is provided. The results show that the proposed method effectively compensates the errors listed above.

Rotordynamic Analysis for Vibration Reduction of a High Speed Cutter (고속절단기의 진동저감을 위한 회전체역학 해석)

  • Suh, Jun-Ho;Baek, Gyoung-Won;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1056-1061
    • /
    • 2004
  • The vibration of rotor systems is caused by various factors, such as misalignment, unbalance, gear meshing, error of assembly, etc. Modal test and TDA/ODS analysis were done. The dynamic analysis of the armature was done with SAMCEF which is a commercial software for finite element and kinematic analysis. The transient response of the armature is calculated by the SAMCEF with the consideration of magnetic force and bearing stiffness, which are the essential elements for the design of high speed cutter. Main frequency of the vibration is due to the unbalance of the armature. The FEM analysis model considering unbalance and the high speed cutter have same vibration properties. The vibration sources of the high speed cutter is proved to be unbalance.

  • PDF

효율적인 회전기계 불균형 응답 계산 방법

  • 박종혁;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.615-619
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in ortor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an exact condensation procedure is introduced to easily take into account bearing parameters in computation of unbalance responses for rotor bearing systems. The present method is illustrated through a numerical example and compared with the conventional method.

Analysis of Magneto-rheological Fluid based Semi-active Squeeze Film Damper and Its Application to Unbalance Response Control of Rotor (자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1005-1011
    • /
    • 2004
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occur particularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheoloaical behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested and identified by means of linear analysis to investigate the capability of changing its dynamic properties such as damping and stiffness. Furthermore, the proposed device is applied to a rotor system to investigate its potential capability for vibration attenuation: an efficient method for selecting the optimal location of the proposed damper is introduced and control algorithm that could improve the unbalance response properties of a flexible rotor is also proposed.

  • PDF

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Analysis of Magneto-rheological Fluid Based Semi-active Squeeze Film Damper and its Application to Unbalance Response Control of Rotor (자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.354-363
    • /
    • 2005
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occurparticularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheological behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested, and identified to investigate the capability of changing its dynamic properties such as damping and stiffness.In order to apply the MR-SFD to the vibration attenuation of a rotor, a systematic approach for determining the damper's optimal location is investigated, and also, a control algorithm that could improve the unbalance response characteristics of a flexible rotor is proposed and its control performance is validated with a numerical example.

Noise Estimation of Oil Lubricated Journal Bearings (유체 윤활 저널 베어링의 소음 예측)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1058-1064
    • /
    • 2003
  • Noise estimating procedures of oil lubricated journal bearings are presented. Nonlinear analysis of rotor-bearing system including unbalance mass of the rotor is performed in order to obtain acoustical properties of the bearing. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Noise estimating procedures presented in this paper could aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings.

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF