• Title/Summary/Keyword: Unbalance Vibration

Search Result 309, Processing Time 0.024 seconds

A Study on the Vibration of Rotordynamic System Structured Rotor-Bearing and Rotor-Bearing-Stator (로터-베어링/로터-베어링-스테이터로 구성된 회전체 진동에 관한 연구)

  • 주성현;김광식;김창호;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.173-178
    • /
    • 1990
  • 로터-베어링축계는 증기및 가스터빈, 터보 발전기, 압축기등 거의 모든 산업 기계류에서 동력 전달의 기본 도구로써 사용되고 있다. 즉 회전에 의한 동력 의전달은 비교적 간단히 대용량의 동력을 효율적으로 전달할 수 있다. 이에 따라 회전기계류에 대한 연구는 산업 혁명 이후 꾸준히 발전되어 온바, 특히 근래에 들어와 산업기계류의 경쟁이 치열하여짐에 따라 산업기계류의 고정 밀화, 고속화, 고신뢰화 요구가 증대하고 있는 현실을 비추어 볼때, 산업 기 계류의 근간을 이루고 있는 로터-베어링 축계의 안정성을 포함한 진동에 관 한 문제는 회전기계류 설계의 주요 기술로써 연구.개발의 필요성이 매우 높 다 하겠다. 회전축계 진동 관련 연구는 두 분야로 대별될 수 있는데 언밸런 스(Unbalance)에 의한 Synchronous진동과 여러가지 원인에 의해 계의 불안 정성을 유발시키는 Nonsynchronous진동으로 나눌 수 있다. 본 연구에서는 이들 연구의 기본이 되는 회전축-베어링계 동특성 해석 프로그램을 개발하 였다. 여러가지 방법이 있으나 여기서는 Holzer가 비틀림 진동에 적용하고, Mykiestad(2)와 Prohl(3)에 의하여 회전축의 횡 진동에 적용된 이후 Lund(4) 등에 의하여 베어링의 영향등이 첨가된 전달 매트릭스 (Transfer Matrix) 방 법을 이용하여 임계속도(Critical Speed), 모우드 형태(Mode shapes)를 예측 하고 불안정 판정(Instability Criteria)등을 할 수 있는 프로그램을 개발하였 다. 특히 Murphy(1)의 다항식 방법(Polynomial Method)에 기본을 두어 기존 의 전달 매트릭스가 가지고 있던 반복, 수렴 시간 문제와 빠뜨리는 임계속도 예측에 대한 개선을 이루었으며 기존 논문과 실험 결과와의 비교 검토를 통 하여 개발된 프로그램의 신뢰성을 검토하였다. 특히, 각종 회전 기계의 소형 화, 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.

  • PDF

An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition (기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kim, Moo-Suck;Hwang, Sun-Yang;Kwon, O-Jun;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.65-66
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the new FF 6th stage automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new FF 6th speed automatic transmissions' output gear. The gear noise was dramatically disappeared and the process and results will offer good guides to the engineers who manufacture the gear with the grinding machine.

  • PDF

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

Effects of Design Conditions in Five Pad Tilting Pad Bearing on the Lateral Vibration Characteristics of Small Gas Turbine (5패드 틸팅 패드 베어링의 설계 조건 변화가 소형 가스터빈의 횡진동 특성에 미치는 영향)

  • Ha, Jin-Woong;Myung, Ji-Ho;Suk, Jhin-Ik;Lee, An-Sung;Kim, Young-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.425-432
    • /
    • 2011
  • In tilting pad bearing design process, the selection of the proper configuration type of either a Load-Between-Pad (LBP) or Load-On-Pad (LOP) as well as preload and pivot offset conditions is to be carefully considered. Also the bearing needs to be designed in order to be suited for the rotor-bearing system and operating condition. In this paper, it is observed that the dynamic characteristics in a 5 pad tilting pad bearing for the LBP and the LOP configurations are influenced by the variation of preload and pivot offset. In this context, rotor dynamic analysis of the 5MW industrial gas turbine supported by the tilting pad bearing at the front and roller bearing at the rear is carried out based on the dynamic coefficients of the tilting pad bearing investigated. The result shows that two rigid body critical modes experience various changes according to the influence of the tilting pad bearing uniquely applied to one side of this machine. Mainly, the second critical speed, the rigid body mode of conical shape with high whirling in the tilting pad bearing, is significantly changed by preload and pivot offset regardless of the LBP and LOP configurations. And, the first critical mode, the rigid body mode of conical shape with high whirling in the roller bearing, is sensitively affected by preload applied to the LOP configuration and by the its asymmetric dynamic properties.

  • PDF

An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition (기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kim, Moo-Suk;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.665-671
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new automatic transmissions' gear. The gear noise was dramatically disappeared and the process and the results will offer good guides to the engineers who manufacture the gear with the grinding machine.

Yaw Gearbox Design for 4MW Class Wind Turbine (4MW급 풍력발전기용 요 감속기 설계)

  • Lee, Hyoung-Woo;Kim, In-Hwan;Lee, Jae-Shin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.142-148
    • /
    • 2022
  • In this paper, the weight reduction design of the yaw gearbox for wind turbine was performed through the finite element analysis method, and the stability was checked by performing the critical speed analysis. The weight reduction product can improve engine efficiency, save parts materials, and earn economic benefits. The yaw gearbox is lightweighted with the goal of achieving a safety rate of 1.3 or higher for wind turbine as indicated by IEC61400-1. In order to reduce the weight of the carrier, a topology optimization method was performed. The safety factor was verified by performing finite element analysis on the carrier. In addition, the housing and carrier were modeled using the finite element method, and the gear train was modeled using MASTA. For the yaw gearbox, the housing and carrier FE model and the gear train model were connected by the partial structural synthesis method to perform the rotational vibration analysis. Vibration excitation sources are mass unbalance and gear mesh frrequemcy, and as a result of the critical speed analysis, it was found that there was no resonance within the operating speed range.

Rotordynamic Analyses of a Composite Roller for Large LCD Panel Manufacturing (대형 LCD 패널 제조용 복합재 롤러의 회전체 동역학 해석)

  • Park, Hyo-Keun;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Young-Hwan;Yang, Seung-Un;Kim, Dong-Hyun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.8-15
    • /
    • 2006
  • In this study, computational rotor dynamic analyses of a composite roller used for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects of rotor systems. General purpose commercial finite element code, SAMCEF which has special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with optimized lamination angles are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets (웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단)

  • Tuan, Do Van;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.726-735
    • /
    • 2009
  • In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.

Analysis of Dynamics Characteristics of Water Injection Pump through the 2D Finite Element (2D 유한요소 해석을 통한 물 분사 펌프의 동특성 분석)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Kim, Jun-Ho;Choi, Hyeon-Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.462-469
    • /
    • 2014
  • After drilling operations at the offshore plant, crude oil is producted under high pressure. After that time, oil recovery is reduced, because the pressure of the pipe inside is low during the secondary produce. At that time injection sea water at the pipe inside through water injection pump that the device increase to recovery. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic at the domestic company. 2D model has reliability of analysis results for the uncomplicated model. Also element and the node the number of significantly less than in the 3D model. So, the temporal part is very effective. In addition, depending on the quality of mesh 3D is a real model and FEM model occurs error. So, user needs a lot of skill. In this paper, a 2D finite element analysis was performed through the dynamics analysis and the study model was validated.

Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump (고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템)

  • Ro, Seung-Kook;Kyung, Jin-Ho;Park, Jong-Kweon;Nam, Woo-Ho;Koh, Deug-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.256-264
    • /
    • 2010
  • In this paper, a digital controller of magnetic bearing system for a high vacuum turbomolecular pump (TMP) is designed and examined. For stabilizing and providing damping in magnetic bearing, the digital PID controller is applied for each 5 control axes, and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor at high speed of rotation. The fabricated rotor-shaft has its first flexible natural frequency lower than maximum speed, about 614Hz, so the two lead filters are applied to increase damping of flexible mode. Notch filters with rotating frequency were selected to reduce vibration of the pump housing caused by unbalance load. The implemented controllers are verified by examination of frequency response and rotating test up to 40,000 rpm, which is higher than critical speed of backward flexible mode.