• Title/Summary/Keyword: Umbilical vessels

Search Result 30, Processing Time 0.03 seconds

Expression of Ion Channels in Perivascular Stem Cells derived from Human Umbilical Cords

  • Kim, Eunbi;Park, Won Sun;Hong, Seok-Ho
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium ($K^+$) ions across cell membranes. The activity and expression of $K^+$ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) and voltage-dependent $K^+$ ($K_v$) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of $BK_{Ca}$ and $K_v$ channels in PVCs. $K_{Ca}1.1$, $K_{Ca}{\beta}_3$, $K_v1.3$, $K_v3.2$, and $K_v6.1$ were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of $BK_{Ca}{\beta}_{3a}$, $BK_{Ca}{\beta}_4$, $K_v1.3$, $K_v1.6$, and $K_v6.1$ transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.

Increased Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells by Orientia tsutsugamushi Infection (Orientia tsutsugamushi 감염에 의한 사람 제대정맥 내피세포에서 부착분자 발현의 변화)

  • Lee, Eun-Bong;Han, Seung-Hoon;Kim, Sang-Wook;Ihn, Kyung-Soo;Seong, Seung-Yong;Kim, Ik-Sang;Choi, Myung-Sik
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2000
  • Scrub typhus is caused by Orientia tsutsugamushi characterized by fever, headache, lymphadenopathy and eschar formation. Infiltration of inflammatory cells around blood vessels and within the affected organs isS known to be pathologic hallmark of the scrub typhus. Recently, expression of adhesion molecules on vascular endothelial cells was implicated as an important pathogenic mechanism in rickettsial disease. This study was performed to examine the expression of adhesion molecules and to investigate its role in the pathogenesis of O. tsutsugamushi infection. The expression of adhesion molecules on human umbilical vein endothelial cells (HUVEC) was measured by flow cytometry and indirect immunofluorescence. Expression of E-selectin, ICAM-1 and VCAM-1 was significantly increased 4 hours after the infection and persisted at least for 24 hours. Expression of those molecules was not induced by killed O. tsutsugamushi. Adhesion of polymorphonuclear cells and mononuclear cells to HUVEC was increased after the infection with O. tsutsugamushi. In conclusion, adhesion molecules are expressed on HUVEC during the infection of live O. tsutsugamushi and those molecules can contribute to the infiltration of inflammatory cells during the infection.

  • PDF

Ethanol Extracts of Chungkookjang Stimulate the Proliferation and Migration of Human Umbilical Vascular Endothelial Cells (청국장 에탄올 추출물의 혈관내피세포 증식과 이동 촉진효과)

  • Hwang, Jae Sung;Sung, Dae Il;Lee, Whan Myung;Chung, Young Shin;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.223-226
    • /
    • 2014
  • In the fermented soybean product known as "chungkookjang", diverse bioactive compounds are produced when the soybean proteins are degraded during fermentation. Vascular endothelial cells (EC) are crucial in vein function and the formation of new vessels. A treatment to stimulate formation of new blood vessels is needed in cerebrovascular diseases that lead to ischaemic stroke and heart attack, as well as for diabetic ulcers. VEGF (Vascular Endothelial Growth Factor) simulates EC formation. The effect of Chungkookjang ethanol extract (CEE) on the proliferation of EC was studied. CEE (100, $1000{\mu}g/ml$) and boiled CEE were as effective as VEGF (10 ng/ml) for the proliferation of human umbilical vascular endothelial cells (HUVEC). The effect of CEE on the migration of HUVEC was investigated using sprout analysis. CEE ($100{\mu}g/ml$) was as effective as VEGF (10 ng/ml) for the migration of HUVEC. Isolation of specific peptides influencing the growth and migration of EC is needed.

Suppressive Effects of Ethyl Acetate Fraction from Green Tea Seed Coats on the Production of Cell Adhesion Molecules and Inflammatory Mediators in Human Umbilical Vein Endothelial Cells (Human Umbilical Vein Endothelial Cells에서 녹차씨껍질 에틸아세테이트 추출물의 세포부착물질 및 염증매개인자 생성 억제효과)

  • Noh, Kyung-Hee;Kim, Jong-Kyung;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.635-641
    • /
    • 2011
  • Anti-atherogenic effects in tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated human umbilical vein endothelial cells (HUVEC) are involved with suppressed oxidative stress, cell adhesion molecules, and pro-inflammatory factors. The aim of this study was to determine whether green tea seed coat ethyl acetate fraction (GTSCE) could modulate cell adhesion molecules and inflammatory mediators in HUVEC stimulated with TNF-${\alpha}$. Nitric oxide (NO) production was significantly increased in TNF-${\alpha}$-stimulated HUVEC compared to TNF-${\alpha}$ only treated cells. The NO that is produced by endothelial nitric oxide synthase dilates blood vessels and has protective effects against platelet and leucocyte adhesion. GTSCE at 25, 50, 75, and $100\;{\mu}g$/mL significantly (p<0.05) reduced TNF-${\alpha}$ production. GTSCE significantly (p<0.05) inhibited soluble vascular cell adhesion molecule-1 level, in a dose-dependent manner. Monocyte chemoattractant protein-1 level was also significantly (p<0.05) inhibited by GTSCE treatment at $75\;{\mu}g$/mL compared to the TNF-${\alpha}$-only treated group. Total antioxidant capacity by GTSCE was significantly (p<0.05) enhanced compared to the TNF-${\alpha}$-only treated group. These results suggest that GTSCE can inhibit the production of cell adhesion molecules and inflammatory mediators and could be used as a candidate bioactive material to prevent the development of atherosclerosis.

Analysis of Fatty Acid Composition and Effects of Pumpkin Seed Oil on Human Umbilical Vein Endothelial Cells (호박씨유의 지방산 성분 분석 및 Human Umbilical Vein Endothelial Cell에 미치는 영향 연구)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Lee, Jeong Il;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2014
  • Pumpkin seed oil (PSO) was investigated for its parasite elimination activity and efficacy in treating disorders of the prostate gland and urinary bladder. We confirmed the composition of PSO and identified its ability to improve vessels. Gas chromatography coupled with mass spectrometric (GC-MS) system was used for PSO composition analysis. Cytotoxicity and cell proliferation were confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide(NO) production was measured with Griess reagent, and intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA expression levels were measured by reverse transcription polymerase chain reaction (RT-PCR). As a result, PSO revealed the presence of several components such as linoleic acid, oleic acid, palmitic acid and stearic acid. Cytotoxic effects of PSO were not observed, and PSO increased nitric oxide production in human umbilical vein endothelial cells (HUVEC). Additionally, TNF-${\alpha}$-induced cell proliferation and ICAM-1 expression in HUVEC were inhibited by PSO treatment, whereas VCAM-1 expression was not significantly reduced. Taken together, these results show that PSO is worthy of study as a candidate food material for improvement of vascular disease.

Role of Recombinant PnTx2-6 Protein as a Mediator of Vasodilation in Blood Vessels

  • Park, Seung-Won;Kim, Seong Ryul;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.39-44
    • /
    • 2017
  • The venome of Phoneutria nigriventer spider has been shown to have side effects including severe painful erections that last for hours. PnTx2-6, a toxin from P. nigriventer spider venom, modulates voltage gated $Na^+$ channels and activation of nitric oxide (NO) production. NO is essential for the regulation of blood flow and pressure. Therefore, PnTx2-6 is expected to be effective not only for erectile dysfunction but also for cardiovascular diseases. A previously has reported cDNA clone for PnTx2-6 toxin, which was expressed in E. coli cytoplasm. We created the same clone and expressed it in a bacterial expression system. PnTx2-6 increased the genes expression of superoxide dismutase 1, glutathione peroxidase 1, and sulfiredoxin 1. We hypothesized that recombinant PnTx2-6 may indirectly regulate blood flow and pressure, resulting in NO production in human umbilical vein endothelial cells (HUVEC). These data suggest differential regulation of the vascular ageing process, which may contribute to the anatomic heterogeneity of atherosclerosis. The results of this study may be used for the emergency treatment of sudden cardiovascular disease caused by ageing.

Hot Water Extract of Scutellaria baicalensis Inhibits Migration, Invasion and Tube Formation in a Human Umbilical Vein Endothelial Cell Model and a Rat Aortic Ring Sprouting Model (혈관내피세포와 흰쥐 대동맥 미세혈관 발아 모델을 이용한 황금 열수추출물의 세포의 이동, 침투 및 관형성 억제 연구)

  • Kim, Eok-Cheon;Bae, Kiho;Kim, Han Sung;Yoo, Yeong-Min;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.91-100
    • /
    • 2016
  • Angiogenesis is essential for the pathophysiological processes of embryogenesis, tissue growth, diabetic retinopathy, psoriasis, wound healing, rheumatoid arthritis, cardiovascular diseases, and tumor growth. Inhibition of angiogenesis represents an attractive therapeutic approach for the treatment of angiogenic diseases such as cancer. However, uncontrolled angiogenesis is also necessary for tumor development and metastasis. Inhibition of vascular endothelial growth factor (VEGF) signaling, a critical factor in the induction of angiogenesis, cause robust and rapid changes in blood vessels of tumors and therefore VEGF constitutes a target for such anti-angiogenic therapy. Recently, since natural compounds pose significantly less risk of deleterious side effects than synthetic compounds, a great many natural resources have been assessed for useful substance for anti-angiogenic treatment. Here we evaluated the anti-angiogenic effects of a hot water extract of Scutellaria baicalensis (SBHWE) using in vitro assays and ex vivo animal experiments. Our results show that SBHWE dose-dependently abrogated vascular endothelial responses by inhibiting VEGF-stimulated migration and invasion as well as tube formation in a human umbilical vein endothelial cell (HUVEC) model, without cytotoxicity, as determined by a cell viability assay. Further study revealed that SBHWE prevented VEGF-induced neo-vascularization in a rat aortic ring sprouting model. Taken together, our findings reveal an anti-angiogenic activity of Scutellaria baicalensis and suggest that SBHWE is a novel candidate inhibitor of VEGF-induced angiogenesis.

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

Microsurgical Training using Preserved Saphenous Vein (혈관문합 연습을 위한 보존된 복재정맥의 활용)

  • Song, Jennifer K.;Hwang, So-Min;Lim, Kwang-Ryeol;Jung, Yong-Hui
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • Purpose: Given that the critical nature of the microvascular anastomosis to what is often a long and difficult reconstructive operation, trainees need to have a high level of microsurgical competence before being allowed to perform microsurgery on patients. Some artificial substitutes and dead or live animal models have been used to improve manual dexterity under the operating microscope. Yet, most surgeons are not equipped with such models, so search for easy available and appropriate microsurgical practice model have been an issue. Umbilical artery, placental vessels and gastroepiploic arteries have been previously suggested as a microsurgical training model, which involves other surgical departments. The purpose of this article is to introduce that saphenous vein specimen obtained from varicose vein surgery is useful and has many advantages as training model for the practice of microvascular anastomosis. Methods: The conventional technique using perforation/inversion method with a metallic stripper is widely performed for varicose vein patients. The stripper is inserted through disconnected safeno-femoral junction and retrieved at the knee or the medial side of ankle. The length of saphenous vein specimens removed is about that of one's leg and inversed from inside out. Obtained saphenous vein specimens are re-inversed and cleansed with normal saline, to be readily available for microsurgical practice. Preserved in a squeezed wet saline gauze and refrigerated, frozen or glycerated specimens were investigated into their comparative quality for microsurgical practice. Results: Varicose vein surgery remains one of the common operations performed in the field of plastic surgery. Convenient informed consent regarding the vessel donation can be easily signed. The diameter of the obtained saphenous vein is as variable as 1.5 to 6 mm, which is already stripped, and is in sufficient length corresponding to that of patient's leg. Vessels specimens were available for microsurgical practice within 1 week period when preserved with squeezed wet saline gauze, and the preservation period could be extended monthly by freezing it. Conclusion: Saphenous vein obtained from varicose vein patients provide with variable size of vessel lumen with sufficient length. The practice can be cost effective and does not require microsurgical laboratory. Additionally there is no need of involving other surgical departments in acquiring vessel specimens. Furthermore, simple preservation method of refrigerating for a week or freezing with squeezed wet saline gauze for a month period, allow the saphenous vein obtained after varicose vein surgery as an excellent model for the microsurgical practice.

Hizikia Fusiformis Hexane Extract Decreases Angiogenesis in Vitro and in Vivo (Hizikia fusiformis 추출물의 in vitro 및 in vivo에서 혈관신생 감소 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Yung Park;Ji-hyeok Lee;Eui-Yun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.703-712
    • /
    • 2023
  • Angiogenesis, the formation of blood vessels from pre-existing vessels, is a multistep process regulated by modulators of angiogenesis. It is essential for various physiological processes, such as embryonic development, chronic inflammation, and wound repair. Dysregulation of angiogenesis causes many diseases, such as cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. However, the number of effective anti-angiogenic drugs is limited. Recent research has focused on identifying potential drug candidates from natural sources. For example, marine natural products have been shown to have anti-cancer, anti-oxidant, anti-inflammatory, antiviral, and wound-healing effects. Thus, this study aimed to describe the angiogenesis inhibitory effect of Hizikia fusiforms (brown algae) extract. The hexane extract of H. fusiformis has shown inhibitory effects on in vitro angiogenesis assays, such as cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). The hexane extract of H. fusiformis (HFH) inhibited in vivo angiogenesis in a mouse Matrigel gel plug assay. In addition, the protein expression of vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal kinase, and AKT serine/threonine kinase 1 decreased following treatment with H. fusiformis extracts. Our results demonstrated that the hexane extract of H. fusiformis (HFH) inhibits angiogenesis in vitro and in vivo.