• Title/Summary/Keyword: Ultraviolet nanoimprint lithography, stamp fabrication

Search Result 6, Processing Time 0.023 seconds

UV transparent stamp fabrication for UV nanoimprint lithography (UV 나노임프린트 리소그래피용 UV 투과성 나노스탬프 제작)

  • Jeong, Jun-Ho;Sim, Young-Suk;Sohn, Hyon-Kee;Shin, Young-Jae;Lee, Eung-Suk;Hur, Ik-Boum;Kwon, Sung-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1069-1072
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising nanoimprint method for cost-effectively defining nanometer scale structures at room temperature and low pressure. Nanostamp fabrication technology is a key technology for UV-NIL because fabricating a high resolution nanostamp is the first step for defining high resolution nanostructures in a substrate. We used quartz as an UV transparent stamp material for the UVNIL. A $5{\times}5{\times}0.09$ inch stamp was fabricated using the quartz etch process in which Cr film was used as a hard mask for transferring nanostructures into the quartz. In this paper, we describe the quartz etching process and discuss the results including SEM images.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Single-step UV nanoimprint lithography on a 4" Si wafer (4" Si 웨이퍼에 대한 single-step UV 나노임프린트 리소그래피)

  • 정준호;손현기;심영석;신영재;이응숙;최성욱;김재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.199-202
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a 5$\times$5$\times$0.09 in. quartz stamp whose critical dimension is 377 nm was fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply tile fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer Experiments have shown that the multi-dispensing method can enable UV-NIL rising a large-area stamp.

  • PDF

Fabrication of Fluorine Doped Diamond-Like Carbon Stamp for UV-Nanoimprint Lithography (UV 나노임프린트 리소그래피를 위한 불화 함유 다이아몬드 상 탄소 스탬프의 제작)

  • Ozhan Altun Ali;Jeong Jun-Ho;Rha Jong-Joo;Choi Dae-Geun;Kim Ki-Don;Lee Eung-Sug
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.145-146
    • /
    • 2006
  • A fluorine-doped diamond-like carbon (F-DLC) stamp which has high contact angle, high UV-transmittance and sufficient hardness, was fabricated using the following direct etching method: F-DLC is deposited on a quartz substrate using DC and RF magnetron sputtering, PMMA is spin coated and patterned using e-beam lithography and finally, O2 plasma etching is performed to transfer the line patterns having 100 nm line width, 100 nm line space and 70 nm line depth on F-DLC. The optimum fluorine concentration was determined after performing several pre-experiments. The stamp was applied successfully to UV-NIL without being coated with an anti-adhesion layer.

  • PDF

UV-Nanoimprint Lithography Using Fluorine Doped Diamond-Like Carbon Stamp (불화 함유 다이아몬드 상 탄소 스탬프를 사용하는 UV 나노 임프린트 리소그래피)

  • Jeong, Jun-Ho;Ozhan, Altun Ali;Rha, Jong-Joo;Choi, Dae-Geun;Kim, Ki-Don;Choi, Jun-Hyuk;Lee, Eung-Sug
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • A fluorine-doped diamond-like carbon (F-DLC) stamp which has high contact angle, high UV-transmittance and sufficient hardness, was fabricated using the following direct etching method: F-DLC is deposited on a quartz substrate using DC and RF magnetron sputtering, PMMA is spin coated and patterned using e-beam lithography and finally, $O_2$ plasma etching is performed to transfer the line patterns having 100 nm line width, 100 nm line space and 70 nm line depth on F-DLC. The optimum fluorine concentration was determined after performing several pre-experiments. The stamp was applied successfully to UV-NIL without being coated with an anti-adhesion layer.

  • PDF

Fabrication of UV imprint stamp using diamond-like carbon coating technology (Diamond-like carbon 코팅기술을 사용한 UV-임프린트 스탬프 제작)

  • JEONG JUN-HO;KIM KI-DON;SIM YOUNG-SUK;CHOI DAE-GEUN;CHOI JUNHYUK;LEE EUNG-SUG;LIM TAE-WOO;PARK SANG-HU;YANG DONG-YOL;CHA NAM-GOO;PARK JIN-GOO
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.167-170
    • /
    • 2005
  • The two-dimensional (2D) and three-dimensional (3D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography (UV-NIL) were fabricated using two kinds of methods, which were a DLC coating process followed by the focused ion beam (FIB) lithography and the two-photon polymerization (TPP) patterning followed by nano-scale thick DLC coating. We fabricated 70 nm deep lines with a width of 100 nm and 70 nm deep lines with a width of 150 nm on 100 nm thick DLC layers coated on quartz substrates using the FIB lithography. 200 nm wide lines, 3D rings with a diameter of $1.35\;{\mu}m$ and a height of $1.97\;{\mu}m$, and a 3D cone with a bottom diameter of $2.88\;{\mu}m$ and a height of $1.97\;{\mu}m$ were successfully fabricated using the TPP patterning and DLC coating process. The wafers were successfully printed on an UV-NIL using the DLC stamp. We could see the excellent correlation between the dimensions of features of stamp and the corresponding imprinted features.

  • PDF