• Title/Summary/Keyword: Ultrastructure

Search Result 676, Processing Time 0.148 seconds

Effect of Freezing and Thawing on the Histology and Ultrastructure of Buffalo Muscle

  • Sen, A.R.;Sharma, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1291-1295
    • /
    • 2004
  • Histology and transmission electron microscopy studies were carried out on buffalo muscles that were subjected to repeated freeze-thaw cycles at -10 and $-18^{\circ}C$. In the first freeze thaw cycle ($-10^{\circ}C$) structures of muscle showed slight change and closely resembled to those of normal muscle. There were frequent gaps in the half way across the fibres and some cracks in individual fibre were also noticed in second freeze thaw cycle. In the muscle frozen at $-18^{\circ}C$, more pronounced shrinkage with extensive damage of fibres with tearing was observed. The interfibrillar gaps were wider, shrinkage and tearing of the fibres were more distinct after second freeze-thaw cycle. After the second cycle, the interior portion showed large scale degradation of the ultrastructure. Our studies of buffalo muscle showed that under the proper condition, little structural damage takes place in the meat histology and ultrastructure under repeated freeze-thaw conditions. This study adds continued weight to the evidence that limited freeze-thaw cycles will not deteriorate the quality of meat.

Comparative Ultrastructures of the Fertilized Egg Envelopes in Danio rerio and Danio rerio var. frankei, Cyprinidae, Teleostei

  • Joo, Kyung Bok;Kim, Dong Heui
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • The leopard danio, Danio rerio var. frankei is a spotted color morph of the zebrafish, Danio rerio caused by a pigment mutation. The structural differences of fertilized egg and egg envelope are poorly documented. To clarify this, we compared the fertilized egg morphology and ultrastructures of surface structures, the micropyle and the cross section of fertilized egg envelopes of zebrafish and leopard danio, variation species of zebrafish using a light and electron microscopes. Although the fertilized egg sizes were different, the external shapes of the fertilized eggs of two species couldn't be differentiated under the light microscope. The characteristics of fertilized eggs, such as a spherical shape, a non-adhesive quality and a large perivitelline space, were shown to be related to spawning habit. In ultrastructure of fertilized egg envelope, there is no morphological difference of micropyle between two species. By contrast, the ultrastructure and the numbers of knob-like structures and semihemisphere-like structures per unit area on the outer surface, and the number of lamellae of inner layer on the fertilized egg envelope section displayed definite species specificity. Collectively, our data indicate that the ultrastructure of fertilized egg envelope in the zebrafish could be differentiated by species variation.

Ultrastructure of Spermatogenesis in the Testis of Paragonimus heterotremus

  • Uabundit, Nongnut;Kanla, Pipatphong;Puthiwat, Phongphithak;Arunyanart, Channarong;Chaiciwamongkol, Kowit;Maleewong, Wanchai;Intapan, Pewpan M.;Iamsaard, Sitthichai;Hipkaeo, Wiphawi
    • The Korean Journal of Parasitology
    • /
    • v.51 no.6
    • /
    • pp.669-676
    • /
    • 2013
  • Lung fluke, Paragonimus heterotremus, is a flatworm causing pulmonary paragonimiasis in cats, dogs, and humans in Southeast Asia. We examined the ultrastructure of the testis of adult P. heterotremus with special attention to spermatogenesis and spermiogenesis using scanning and transmission electron microscopy. The full sequence of spermatogenesis and spermiogenesis, from the capsular basal lamina to the luminal surface, was demonstrated. The sequence comprises spermatogonia, spermatocytes with obvious nuclear synaptonemal complexes, spermatids, and eventual spermatozoa. Moreover, full steps of spermatid differentiation were shown which consisted of 1) early stage, 2) differentiation stage representing the flagella, intercentriolar body, basal body, striated rootlets, and electron dense nucleus of thread-like lamellar configuration, and 3) growing spermatid flagella. Detailed ultrastructure of 2 different types of spermatozoa was also shown in this study.

Changes of Chloroplast Ultrastructure and Thylakoid Membrane Proteins during Growth of Ginseng (Panax ginseng C.A. Meyer) Leaf (인삼(Panax ginseng C.A. Meyer) 잎의 생장과정에 따른 엽록체 미세구조 및 틸라코이드막 단백질의 변화)

  • Ahn, Joung-Sook;Park, Hoon;Kim, Woo-Kap
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The formation of thylakoid membrane proteins and changes in the chloroplast ultrastructure of ginseng leaf were investigated as a function of time following the leaf emergence. The leaf chloroplast obtained just after the leaf emergence showed short rod-like thylakoids which were connected and arranged in 3~4 layers along the longitudinal axis of the chloroplast. The 10 DAE (days after emergence) chloroplast started to form grana structure. The typical grana structure was observed 17 DAE, and the grana was fully developed 28 DAE. The membrane proteins obtained from just after emerging leaf were separated into many minor bands indicating no CP-complex formation yet. LHC II was detected after 10 days. CP 47 and CP 43 were detected after 17 days. After 28 days, the PS I and PS II proteins were distinctly separated into CP 1, LHC II, CP 47, CP 43, CP 29, CP 27+24. Thus, the appearance of the light harvesting protein, LHC II, which was concentrated in grana stacks, was consis tent in time with the formation of grana stacks 17 DAE. Key words Chloroplast ultrastructure, grana, CP-complex, LHC II.

  • PDF

Ultrastructure of the flagellar apparatus in Rhodomonas salina (Cryptophyceae, Cryptophyta)

  • Nam, Seung Won;Jo, Bok Yeon;Shin, Woongghi
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.278-288
    • /
    • 2020
  • Rhodomonas salina is a phototrophic marine flagellate. We examined the ultrastructure of R. salina with particular attention to the flagellar apparatus by transmission electron microscopy and compared it with that of other cryptomonads reported previously. The major components of the flagellar apparatus in R. salina were a keeled rhizostyle (Rhs), a striated fibrous root(SR), a SR-associated microtubular root (SRm), a mitochondrion-associated lamella (ML), and three types of microtubular roots (9r, 4r, and 2r). The keeled Rhs originated near the proximal end of the dorsal basal body, passed near the nucleus and dissociated at the posterior end of the cell. The SR and SRm originated between two basal bodies and laterally extended to the right side of the cell. The ML originated between two basal bodies and extended to the left side of the cell. The 9r originated between the ventral basal body and the Rhs and extended toward the anterior dorsal lobe of the cell. The 4r originated near the 9r and extended toward the dorsal lobe with the 2r, which originated between two basal bodies. Here, the flagellar apparatus in R. salina is described, and the ultrastructure of the flagellar apparatus is compared among cryptomonad species.

Ultrastructure of the Fertilized Egg Envelope from Pseudobagrus fulvidraco, Bagridae, Teleostei

  • Sohn, Joon Hyung;Kwon, Ohyun;Kim, Dong Heui
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • The ultrastructure of fertilized egg envelope from Pseudobagrus fulvidraco belongs to Bagridae was investigated using light and electron microscopes. The fertilized egg was compressed spherical, light-yellowish, demersal, and adhesive. The size of fertilized egg is about $1.85{\pm}0.13mm$, perivitelline space is not well developed, and there were no appendicular structures on the outer surface of egg envelope and oil droplets in vitelline membrane under light microscope. The micropyle was located in the animal pole of fertilized egg. Adhesive reticular fiber was covered fertilized egg envelope. The thickness of egg envelope was about $3.7{\sim}4.2{\mu}m$, and the egg envelope consisted of two layers: an outer, electron-dense adhesive fibers layer and an simple inner layer with pore. Therefore, the ultrastructure of cross section of the fertilized egg envelope showed species specificity, but studies on the other species belongs to Bagridae were need to get correct information about common traits in family.

Surface ultrastructure of the adult stage of Acanthotrema felis (Trematoda: Heterophyidae)

  • Sohn, Woon-Mok;Seo, Min;Chai, Jong-Yil
    • The Korean Journal of Parasitology
    • /
    • v.41 no.2
    • /
    • pp.107-111
    • /
    • 2003
  • The surface ultrastructure of Acanthotrema felis (Trematoda: Heterophyidae) adults, recovered from a kitten experimentally infected with the metacercariae, was observed using a scanning electron microscope. The worm was leaf-like, ventrally concave and covered with scale-like multi-pointed tegumental spines. The spines on the anterior surface were short but broad, and had 10-12 pointed tips. The cytoplasmic processes protruded around the spines, like pockets for the spines. The ventrogenital opening was crescent, or kidney-shaped, and had protuberances with minute spines on its surrounding tegument. The spines on the posterior surface were long, but narrow, with 6-8 pointed tips. The cytoplasmic processes on this tegument were ridge-like, and elevated along the row of the spines. The surface ultrastructure of A. felis is generally similar to that of other heterophyid flukes, but some features are characteristic, and may be of taxonomic and bio-ecological significance.

Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed

  • Radwan, Lamiaa M.;Galal, A.;Shemeis, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.993-998
    • /
    • 2015
  • Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible ($R^2=0.01$ to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate ($R^2=0.85$) than that based on shell thickness alone ($R^2=0.72$). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer ($R^2$ not exceeded 18%). The maximum accuracy of prediction of total score ($R^2=0.48$) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction.

The Effect of Early Intervention and Rehabilitation in the Expression of Aquaporin-4; and Ultrastructure Changes on Rat's Offspring's Damaged Brain Caused by Intrauterine Infection

  • Kumar, Rajesh;Li, Xiaojie;Kong, Xiangying
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • Objective : To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods : 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results : The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion : Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain.

Preservation of Ultrastructure of Ultrathin Frozen Sections for Immunoelectron Microscopic Observation (면역전자현미경적 관찰을 위한 동결초박절편의 미세구조 보존)

  • Kim, Yun-Sang;Chae, Hee-Sun;Kim, Kyung-Yong;Lee, Won-Bok
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.465-475
    • /
    • 1998
  • The cryoprotection, section retrieval and embedding methods were studied for the preservation of ultrastructure of ultracryomicrosections in immunoelectron microscopy. The results obtained were as follows. 1. The cryoprotection of ultrastructure with a mixture containing 1.7 M sucrose and 15% polyvinylpyrrolidone was better than that with 2.3 M sucrose. The stretching caused by surface tension and the electron lucent holes decreased more in the cryosections infused with 2.3 M sucrose than in those with the mixture. 2. The difference between section retrieval solutions in cases of cryoprotection with 2.3 M sucrose was that the destructive .effects such as electron lucent holes and stretching between myofribrils were less in a mixture containing 1% methylcellulose and 2.3 M sucrose than in 2.3 M sucrose. The difference was obscure in the mixture containing 1.7 M sucrose and 15% PVP, but the destructive effects were slightly less in a mixture containing 1% mthylcellulose and 2.3 M sucrose than in 2.3 M sucrose or 1% methylcellulose. 3. The embedding of cryosection on drying with 2% PVA or 2% methylcellulose exhibited some protective effect during observation with transmission electron microscope, but made the ultrastructure more obscure. 4. Mitochondrial membrane and cristae and myofilaments were well delinated in sections infused with 2.3 M sucrose and retrieved with 1% methylcellulose and 2.3 M sucrose. In summary, it is suggested that the cryoprotection with 2.3 M sucrose and section retrieval with a mixture containing 1% methylcellulose and 2.3 M sucrose are good for the ultrastructure of cryosections.

  • PDF