Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.2.278

Ultrastructure of the flagellar apparatus in Rhodomonas salina (Cryptophyceae, Cryptophyta)  

Nam, Seung Won (Nakdonggang National Institute of Biological Resources)
Jo, Bok Yeon (Nakdonggang National Institute of Biological Resources)
Shin, Woongghi (Department of Biology, Chungnam National University)
Publication Information
Korean Journal of Environmental Biology / v.38, no.2, 2020 , pp. 278-288 More about this Journal
Abstract
Rhodomonas salina is a phototrophic marine flagellate. We examined the ultrastructure of R. salina with particular attention to the flagellar apparatus by transmission electron microscopy and compared it with that of other cryptomonads reported previously. The major components of the flagellar apparatus in R. salina were a keeled rhizostyle (Rhs), a striated fibrous root(SR), a SR-associated microtubular root (SRm), a mitochondrion-associated lamella (ML), and three types of microtubular roots (9r, 4r, and 2r). The keeled Rhs originated near the proximal end of the dorsal basal body, passed near the nucleus and dissociated at the posterior end of the cell. The SR and SRm originated between two basal bodies and laterally extended to the right side of the cell. The ML originated between two basal bodies and extended to the left side of the cell. The 9r originated between the ventral basal body and the Rhs and extended toward the anterior dorsal lobe of the cell. The 4r originated near the 9r and extended toward the dorsal lobe with the 2r, which originated between two basal bodies. Here, the flagellar apparatus in R. salina is described, and the ultrastructure of the flagellar apparatus is compared among cryptomonad species.
Keywords
cryptomonad; flagellar apparatus; rhizostyle; Rhodomonas; ultrastructure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kugrens P, BL Clay and RE Lee. 1999. Ultrastructure and systematics of two new freshwater red Cryptomonads, Storeatula rhinosa, sp. nov. and Pyrenomonas ovalis, sp. nov. J. Phycol. 35:1079-1089.   DOI
2 Laza-Martínez A. 2012. Urgorri complanatus gen. et sp. nov. (Cryptophyceae), a red-tide-forming species in brackish waters. J. Phycol. 48:423-435.   DOI
3 Lucas IAN. 1970a. Observations on the ultrastructure of representatives of the genera hemiselmis and Chroomonas (Cryptophyceae). Br. Phycol. J. 5:29-37.   DOI
4 Lucas IAN. 1970b. Observations on the fine structure of the Cryptophyceae. I. The genus Cryptomonas. J. Phycol. 6:30-38.   DOI
5 Marin B, M Klingberg and M Melkonian. 1998. Phylogenetic relationships among the Cryptophyta: analyses of nuclear- encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149:265-276.   DOI
6 Mignot JP, L Joyon and EG Pringsheim. 1968. Complements a l’etude cytologique des Cryptomonadines. Protistologica 4:493-506.
7 Nam SW, D Go, M Son and W Shin. 2013. Ultrastructure of the flagellar apparatus in Rhinomonas reticulata var. atrorosea (Cryptophyceae, Cryptophyta). Algae 28:331-341.   DOI
8 Nam SW and W Shin. 2016. Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications. Algae 31:117-128.   DOI
9 Nam SW, W Shin, WD Coats, JW Park and W Yih. 2012. Ultrastructure of the oral apparatus of Mesodinium rubrum from Korea. J. Eukaryot. Microbiol. 59:625-636.   DOI
10 Oakley BR and JD Dodge. 1976. The ultrastructure of mitosis in Chroomonas salina (Cryptophyceae). Protoplasma 88:241-254.   DOI
11 Perasso L, DRA Hill and R Wetherbee. 1992. Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma 170:53-67.   DOI
12 Reynolds ES. 1963. The use of lead citrate at high ph as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212.   DOI
13 Roberts KR. 1984. Structure and significance of the Cryptomonad flagellar apparatus. I. Cryptomonas ovata (Cryptophyta). J. Phycol. 20:159-167.   DOI
14 Roberts KR, KD Stewart and KR Mattox. 1981. The flagellar apparatus of Chilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. J. Phycol. 17:159-167.   DOI
15 Santore UJ. 1982a. Comparative ultrastructure of two members of the Cryptophyceae assigned to the genus Chroomonas - with comments on their taxonomy. Arch Protistenk 125:5-29.   DOI
16 Santore UJ. 1982b. The ultrastructure of Hemiselmis brunnescens and Hemiselmis virescens with additional observations on Hemiselmis rufescens and comments on the Hemiselmidaceae as a natural group of the Cryptophyceae. Br. Phycol. J. 17:81-99.   DOI
17 Santore UJ. 1984. Some aspects of txonomy in the Cryptophyceae. New Phytol. 98:627-646.   DOI
18 Tanifuji G, NT Onodera and Y Hara. 2010. Nucleomorph genome diversity and its phylogenetic implications in Cryptomonad algae. Phycol. Res. 58:230-237.   DOI
19 von der Heyden S, E Chao and T Cavalier-Smith. 2004. Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur. J. Phycol. 39:343-350.   DOI
20 Willen E, M Oke and F Gonzalez. 1980. Rhodomonas minuta and Rhodomonas lens (Cryptophyceae) -aspects on form variation and ecology in lakes Mälaren and Vattern, Central Sweden. Acta Phytogeogr Suec 68:163-172.
21 Butcher RW. 1967. An Introductory Account of the Smaller Algae of British Coastal Waters. Part IV: Cryptophyceae. Fishery investigations, ser. IV. Ministry of Agriculture, Fisheries and Food HMSO, London, UK.
22 Cavalier-Smith T, JA Couch, KE Thorsteinsen, P Gilson, JA Deane, DRA Hill and GI McFadden. 1996. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31:315-328.   DOI
23 Hill DRA and R Wetherbee. 1986. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia 25:521-543.   DOI
24 Deane JA, IM Strachan, GW Saunders, DRA Hill and GI McFadden. 2002. Cryptomonad evolution: nuclear 18s rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38:1236-1244.   DOI
25 Erata M and M Chihara. 1989. Re-examination of Pyrenomonas and Rhodomonas (Class Cryptophyceae) through ultrastructural survey of red pigmented Cryptomonads. Bot. Mag. Tokyo 102:429-443.   DOI
26 Gillott MA and SP Gibbs. 1983. Comparison of the flagellar rootlets and periplast in two marine Cryptomonads. Can. J. Bot. 61:1964-1978.   DOI
27 Hibberd DJ, AD Greenwood and HB Griffiths. 1971. Observations on the ultrastructure of the flagella and periplast in the Cryptophyceae. Br. Phycol. J. 6:61-72.   DOI
28 Hill DRA. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170-188.   DOI
29 Hill DRA and R Wetherbee. 1988. The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia 27:355-365.   DOI
30 Hill DRA and R Wetherbee. 1989. A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia 28:143-158.   DOI
31 Hoef-Emden K, B Marin and M Melkonian. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of Cryptophyte diversity. J. Mol. Evol. 55:161-179.   DOI
32 Javornicky P. 1976. Minute species of the genus Rhodomonas. Arch Protistenk 118:98-106.
33 Kim E and JM Archibald. 2013. Ultrastructure and molecular phylogeny of the Cryptomonad Goniomonas avonlea sp. nov. Protist 164:160-182.   DOI
34 Klaveness DAG. 1981. Rhodomonas lacustris (Pascher & Ruttner) javornicky (Cryptomonadida): ultrastructure of the vegetative cell. J. Protozool 28:83-90.   DOI