• Title/Summary/Keyword: Ultrasound-Assisted Liquid-Liquid Extraction

Search Result 6, Processing Time 0.025 seconds

Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures (식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출)

  • Ha, Geon-Soo;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.229-233
    • /
    • 2016
  • In this study, an efficient ultrasound-assisted liquid-liquid extraction process was developed for recovering of paclitaxel from plant cell cultures. The optimal ultrasonic power and operating time were 250 W and 15 min at fixed ratio of bottom phase, methylene chloride to top phase, MeOH (25%, v/v). Under the optimal conditions developed in the present method, most of the paclitaxel (~92%) was recovered from crude extract by a single extraction step. Due to the synergistic effect of ultrasound by the addition of inorganic salt, an appropriate inorganic salt concentration and the ultrasonic power were found to be required for the effective recovery of paclitaxel using ultrasound-assisted liquid-liquid extraction.

Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from campbell early grape using response surface methodology (반응표면분석법을 이용한 캠벨얼리 포도의 총 안토시아닌과 총 페놀의 초음파 추출조건 최적화)

  • Ryu, Dayeon;Koh, Eunmi
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.474-479
    • /
    • 2018
  • In this study, ultrasound-assisted extraction conditions of total anthocyanins and total phenolic compounds from Campbell early grape (Vitis labruscana) were optimized via response surface methodology using a Box-Behnken design. Three independent variables, including solid-liquid ratio (1/30-1/50 g/mL), extraction time (2-10 min), and amplitude (20-100%), significantly affected total anthocyanin content. However, no significant effect of these variables was observed in the total phenolic compound content. The optimized extraction conditions were solid-liquid ratio of 1/48.13 g/mL, extraction time of 2 min, and amplitude of 20%. Under these conditions, the predicted values of total anthocyanins and total phenolic compounds were 94.96 and 1,661.16 mg/100 g dry weight (DW), respectively. The experimental values of total anthocyanins and total phenolic compounds were 88.25 and 1,554.37 mg/100 g DW, respectively, which is well matched with the predicted values within 7.5% difference.

Simultaneous Determination and Optimization Ultrasound-Assisted Extraction of Poncirin and Naringin in Poncirus trifoliata Rafinesqul (지실의 Poncirin, Naringin의 동시분석법 확립과 초음파 추출법 최적화)

  • Lee, Ah Reum;Jang, Seol;Lee, A Yeong;Choi, Goya;Kim, Hyo Seon;Kim, Ho Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The Ponciri fructus immaturus (Poncirus trifoliata Rafinesque) has been used in oriental medicine for uterine contraction, stomachache, abdominal distension and cardiovascular diseases. Two main compounds, poncirin and naringin were successfully analyzed by high performance liquid chromatography (HPLC) and carried out method validation according to ICH guideline. A successful resolution and retention times were obtained with a $C_{18}$ reversed phase column, at an $1m{\ell}min^{-1}$ flow rate, with a gradient elution of a mixture of methanol, water and acetonitrile. Poncirin and naringin showed good linearity ($R^2$ > 0.999) in relatively wide concentration ranged. The recovery of each compound was 95.81 ~ 101.48% with R.S.D. values less than 1.0%. The application of ultrasound-assisted extraction was shown to be more efficient in extracting poncirin and naringin from Ponciri fructus immaturus. The predicted optimal poncirin and naringin yield were poncirin 2.15%, naringin 1.65% under an extraction temperature of $40^{\circ}C$, an extraction time of 10 min in a solvent of 70% methanol.

Process Development for Production of Antioxidants from Lipid Extracted Microalgae Using Ultrasonic-assisted Extraction (탈지미세조류로부터 초음파추출을 이용한 항산화 물질 생산 공정 최적화)

  • Jo, Jaemin;Shin, Suelgl;Jung, Hyunjin;Min, Bora;Kim, Seungki;Kim, Jinwoo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.542-547
    • /
    • 2017
  • Ultrasound-assisted extraction (UAE) has attracted growing interest, as it is an effective method for the rapid extraction of bioactive compounds from plants with a high extraction efficiency comparable to the conventional extraction. In this study, UAE was used for the extraction of polyphenols from lipid extracted microalgae (Tetraselmis KCTC 12236BP) and the effects of five extraction variables on the total phenolic compounds (TPC) were studied. For the optimization of extraction parameters, particle size, solid-to-liquid (L/S) ratio, ethanol concentration, extraction temperature and extraction time have been examined as independent variables. All variables exhibited the significant effects on the extraction of TPC and extraction temperature showed the most significant effect among five variables. The optimal extraction conditions were the extraction using mixed particle, S/L ratio of 10%, ethanol concentration of 60%, extraction temperature of $100^{\circ}C$ and extraction time of 30 min, which gave the 8.7 mg GAE/g DW for TPC. Compared with conventional hot-water extraction, TPC extraction under UAE was increased by up to 1.8 fold with same extraction condition. This study showed that UAE under low temperature and short extraction time was proven to be an effective extraction process for TPC production from LEA compared to conventional hot-water extraction process.

A Study on Rapid Residual Analysis of Benzo(a)pyrene in Agricultural Products and Soils (농산물 및 경작지 토양 시료 중 Benzo(a)pyrene 신속잔류분석법 개선 연구)

  • Kim, Hee-Gon;Ham, Hun-Ju;Hong, Kyong-Suk;Shin, Hee-Chang;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • BACKGROUND: Benzo(a)pyrene is a highly toxic substance which has been listed as a Group I carcinogen by the International Agency for Research on Cancer. There have been numerous studies by researchers worldwide on benzo(a)pyrene. Soxhlet, ultrasound-assisted, and liquid-liquid extractions have been widely used for the analysis of benzo(a)pyrene. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these disadvantages, we aimed to establish a rapid residual analysis of benzo(a)pyrene content in agricultural products and soil samples. METHODS AND RESULTS: A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was used as the pretreatment procedure. For rapid residual analysis of benzo(a)pyrene, a modified QuEChERS method were used, and the best codition was demonstrated after various performing instrument analysis. The extraction efficiency of this method was also compared with Soxhlet extraction, the current benzo(a)pyrene extracting method. Although both methods showed high recovery rates, the rapid residual analysis method markedly reduced both the measurement time and solvent usage by approximately 97% and 96%, respectively. CONCLUSION: Based on these results, we suggest the rapid residual analysis method established through this study, faster and more efficient analysis of residual benzo(a)pyrene in major agricultural products such as rice, green and red chili peppers and also soil samples.

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.