Browse > Article
http://dx.doi.org/10.9721/KJFST.2018.50.5.474

Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from campbell early grape using response surface methodology  

Ryu, Dayeon (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University)
Koh, Eunmi (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University)
Publication Information
Korean Journal of Food Science and Technology / v.50, no.5, 2018 , pp. 474-479 More about this Journal
Abstract
In this study, ultrasound-assisted extraction conditions of total anthocyanins and total phenolic compounds from Campbell early grape (Vitis labruscana) were optimized via response surface methodology using a Box-Behnken design. Three independent variables, including solid-liquid ratio (1/30-1/50 g/mL), extraction time (2-10 min), and amplitude (20-100%), significantly affected total anthocyanin content. However, no significant effect of these variables was observed in the total phenolic compound content. The optimized extraction conditions were solid-liquid ratio of 1/48.13 g/mL, extraction time of 2 min, and amplitude of 20%. Under these conditions, the predicted values of total anthocyanins and total phenolic compounds were 94.96 and 1,661.16 mg/100 g dry weight (DW), respectively. The experimental values of total anthocyanins and total phenolic compounds were 88.25 and 1,554.37 mg/100 g DW, respectively, which is well matched with the predicted values within 7.5% difference.
Keywords
campbell early grape; ultrasound-assisted extraction; response surface methodology; anthocyanin; phenolic compound;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agcam E, Akyildiz A, Balasubramaniam VM. Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chem. 237: 461-470 (2017)   DOI
2 Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 16: 965-977 (2008)
3 Cacace, JE, Mazza G. Mass transfer process during extraction of phenols compounds from milled berries. J. Food Eng. 59: 379-389 (2003).   DOI
4 Camel V. Microwave-assisted solvent extraction of environmental samples. Trand. Anal. Chem. 19: 229-248 (2000)   DOI
5 Ghafoor K, Jung JE, Choi YH. Effects of gellan, xanthan, and e-carrageenan on ellagic acid sedimentation, viscosity, and turbidity of "Campbell early" grape juice. Food Sci. Biotechnol. 17: 80-84 (2008)
6 Ghafoor K, Park J, Choi YH. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Inno. Food Sci. Emerg. Technol. 11: 485-490 (2010)   DOI
7 Gonzalez-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rossello C, Femenia A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)-A response surface approach. Ultrason. Sonochem. 21: 2176-2184 (2014)   DOI
8 He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 1: 163-187 (2010)   DOI
9 Celli GB, Ghanem A, Brooks MS-L. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using response surface methodology. Ultrason. Sonochem. 27: 449-455 (2015)   DOI
10 Chang EH, Jeong SM, Park KS, Lim BS. Contents of phenolic compounds and trans-resveratrol in different parts of Korean new grape cultivars. Korean J. Food Sci. Technol. 45: 708-713 (2013)   DOI
11 Jiang HL, Yang JL, Shi YP. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrason. Sonochem. 34: 325-331 (2017)   DOI
12 Lapornik B, Prosek M, Gole A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71: 214-222 (2005)   DOI
13 Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88: 1269-1278 (2005)
14 Liao H, Haslam E. Polyphenol interactions. Anthocyanins: Copigmentation and colour changes in red wines. J. Sci. Food Agric. 59: 299-305 (1992)   DOI
15 Mane C, Souquet JM, Olle D, Verries C, Veran F, Mazerolles G, Cheynier V, Fulcrand H. Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of Champagne grape varieties. J. Agric. Food Chem. 55: 7224-7233 (2007)   DOI
16 Espada-Bellido E, Ferreiro-Gonzalez M, Carrera C, Palma M, Barroso CG, Barbero GF. Optimization of the ultrasound-assisted extraction of anthocyanins and phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 219: 23-32 (2017)   DOI
17 Das AB, Goud BB, Das C. Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: A comparative analysis and phytochemical profiling. Ind. Crops. Prod. 95: 332-341 (2017)   DOI
18 Da Porto C, Natolino A. Optimization of the extraction of phenolic compounds from red grape marc (Vitis vinifera L.) using response surface methodology. J. Wine Res. 29: 26-36 (2018)   DOI
19 Downey MO, Rochfort S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J. Chromatogr. A. 1201: 43-47 (2008)   DOI
20 Muangrat R, Pongsirikul I, Blanco PH. Ultrasound assisted extraction of anthocyanins and total phenolic compounds from dried cob of purple waxy corn using response surface methodology. J. Food Process. Preserv. e13447: 1-11 (2017)
21 Pico Y. Ultrasound-assisted extraction for food and environmental samples. Trend. Anal. Chem. 43: 84-99 (2013)   DOI
22 Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes -review. Sci. Total Environ. 407: 2474-2492 (2009)   DOI
23 Folts JD. Potential health benefits from the flavonoids in grape products on vascular disease. 95-111. Flavonoids in Cell Function. Busling B, Manthey J. Kluwe Academic/Plenum Publishers. New York (2002)
24 Ghafoor K, Choi YH. Optimization of Ultrasound assisted extraction of phenolic compounds and antioxidants from grape peel through response surface methodology. J. Korean Soc. Appl. Biol. Chem. 52: 295-300 (2009)   DOI
25 Ghafoor K, Choi YH, Jeon JY, Jo IH. Optimization of Ultrasound-assisted extraction of phenolic compounds, anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 57: 4988-4994 (2009)   DOI
26 Ghafoor K, Hui T, Choi YH. Optimization of ultrasonic-assisted extraction of total anthocyanins from grape peel using response surface methodology. J. Food Biochem. 35: 735-746 (2011)   DOI
27 Said KAM, Amin MAM. Overview on the response surface methodology (RSM) in extraction processes. J. Appl. Sci. Process Eng. 2: 8-16 (2015)
28 Pingret FD, Fabiano-Tixier AS, Chemat F. Ultrasound-assisted extraction. 89-112. Natural product extraction: Principles and applications. Rostagno JPM. RSC Publishing. Cambridge (2013)
29 Pompeu DR, Silva EM, Rogez H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Bioresour. Technol. 100: 6076-6082 (2009)   DOI
30 Rajha HN, Darra NEI, Hobaika Z, Boussetta N, Vorobiev E, Maroun RG, Louka N. Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food. Nutr. Sci. 5: 397-409 (2014)
31 Saint-Cricq de Gaulejac N, Glories Y, Vivas N. Free radical scavenging effect of anthocyanins in red wines. Food Res. Int. 32: 327-333 (1999)   DOI
32 Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. J. Enol. Vitic. 16: 144-158 (1965)
33 Song GC. Grape breeding, cultivation and processing in South Korea. Proceedings of the International Symposium on Grape Production and Processing. Acta Hortic. 785 (2008)
34 Zhang H, Ma Y. Optimisation of high hydrostatic pressure assisted extraction of anthocyanins from Rabbiteye blueberry pomace. Czech J. Food Sci. 35: 180-187 (2017)   DOI
35 Sridhar K, Charles AL. In vitro antioxidant activity of Kyoho grape extracts in DPPH. and ABTS. assay: Estimation methods for $EC_{50}$ using advanced statistical programs. Food Chem. 275: 41-49 (2019)   DOI
36 Varadharajan V, Shanmugam S, Ramaswamy A. Model generation and process optimization of microwave-assisted aqueous extraction of anthocyanins from grape juice waste. J. Food Process Eng. 40: 1-9 (2016)   DOI
37 Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry-review. Innov. Food Sci. Emerg. Technol. 9: 161-169 (2008)   DOI
38 Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in United States: fruits and berries. J. Agric. Food Chem. 53: 2589-2599 (2005)   DOI
39 Yoo MA, Kim JS, Chung HK, Park WJ, Kang MH. The antioxidant activity of carious cultivars of grape skin extract. Food Sci. Biotechnol. 16: 884-888 (2007)
40 Zou TB, Wang M, Gan RY, Ling WH. Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 12: 3006-3017 (2011)   DOI
41 Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21: 323-331 (2010)   DOI