• Title/Summary/Keyword: Ultrasound signal

Search Result 197, Processing Time 0.024 seconds

The Ultrasound Imaging of the Tissue Attenuation Parameter in Human Liver (간 조직 감쇄 계수의 초음파 영상)

  • Song, In-Chan;Kwack, Cheol-Eun;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.227-232
    • /
    • 1990
  • As a part of the study on ultrasonic tissue characterization, conventional ultrasonic imaging system is interfaced to the personal computer to acquire raw ultrasonic signal. One approach for tissue charaterization is performed using the attenuation map to the conventional images and the resulting attenuation map images are compared and inspected inside the region of interest from the viewpoint of pattern analysis. Currently, these methods are applied and modified to effectively find out the differences between the normal control and the patients with liver cirrhosis.

  • PDF

Application of DSP for Processing the Reflected Ultrasonic Signal in Biological Tissue (생체조직내의 초음파 반사신호 처리를 위한 DSP 응용)

  • Lee, S.M.;Min, H.K.;Choi, H.H.;Hong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.720-722
    • /
    • 1988
  • The Diagnostic applications of Ultrasound are developed in many ways. In this paper, We measure the attenuation coeffient of biological tissue using DSP. This method is useful in tissue characterization with real time. In the future, We expect that this method coupling with the ultrasonic temperature dependence of biological tissue also is applied to hyperthermia.

  • PDF

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

Fetal heart rate estimation using high resolution pitch detection algorithm (피치 검출 방법을 이용한 태아심음주기의 추출에 관한 연구)

  • Lee, Eung-Goo;Lee, Yong-Hee;Kim, Sun-I.;Lee, Doo-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.81-85
    • /
    • 1993
  • Despite the simplicity of processing, conventional autocorrelation function (ACF) method for the precise determination of fetal heart rate (FHR) has many problems. In the case of weak or noise corrupted Doppler ultrasound singnals, the ACF method is very sensitive to the threshold level and data window length. It is real troublesome to extract FHR when there is a data loss. To overcome these problems, the high resolution pitch detection algorithm is adapted to estimate the FHR. The FHR is determined from the correlation of two interconnected segments by its maximum correlation value. FHR is compensated with a constant correlation threshold in a greatly smeared noise signal. This method yields more accurate, robust and reliable than the ACF method.

  • PDF

Image Enhancement for Sub-Harmonic Phased Array by Removing Surface Wave Interference with Spatial Frequency Filter

  • Park, Choon-Su;Kim, Jun-Woo;Cho, Seung Hyun;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.

Speech synthesis using acoustic Doppler signal (초음파 도플러 신호를 이용한 음성 합성)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • In this paper, a method synthesizing speech signal using the 40 kHz ultrasonic signals reflected from the articulatory muscles was introduced and performance was evaluated. When the ultrasound signals are radiated to articulating face, the Doppler effects caused by movements of lips, jaw, and chin observed. The signals that have different frequencies from that of the transmitted signals are found in the received signals. These ADS (Acoustic-Doppler Signals) were used for estimating of the speech parameters in this study. Prior to synthesizing speech signal, a quantitative correlation analysis between ADS and speech signals was carried out on each frequency bin. According to the results, the feasibility of the ADS-based speech synthesis was validated. ADS-to-speech transformation was achieved by the joint Gaussian mixture model-based conversion rules. The experimental results from the 5 subjects showed that filter bank energy and LPC (Linear Predictive Coefficient) cepstrum coefficients are the optimal features for ADS, and speech, respectively. In the subjective evaluation where synthesized speech signals were obtained using the excitation sources extracted from original speech signals, it was confirmed that the ADS-to-speech conversion method yielded 72.2 % average recognition rates.

가중 쳐프 신호를 사용한 초음파 고조파 영상 기법

  • 김동열;이종철;권성재;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2002
  • In this parer, a new harmonic imaging technique is Proposed and evaluated experimentally. In the Proposed method. a weighted chirp signal with a hanning window is transmitted. The RF samples obtained on each array element are individually compressed by correlating with the reference signal defined as the 2nd harmonic component($2f_0$) of a transmitted chirp signal generated in a square-law system. The correlator output will then consist of the compressed version of the $2f_0$ component generated in tissue and the crosscorrelation sequence of the fundamental($f_0$) and 2f$_{0}$components. The Proposed method uses the compressed $2f_0$ component to form an image. for which the crosscorrelation term should be suppressed below at least -50dB. The Proposed method has two process, 2f$_{0}$-correlation and $2f_0$-correlation(PI) . $2f_0$-correlation can successfully eliminate the $f_0$ component with a single transmit-receive events and therefore is more efficient than the conventional Pulse inversion method in terms of the frame rate. 2i)-correlation(Pl) Performs pulse compression after applying pulse inversion method for the 2nd harmonic image with high resolution and SNR. Another advantage of the proposed method is that the SNR of 2nd harmonic imaging can be improved without limitation by increasing the duration of the chirp signal. The proposed method was verified through both the computer simulations and actual experiments .ts .

Image enhancement in ultrasound passive cavitation imaging using centroid and flatness of received channel data (수신 채널 신호의 무게중심과 평탄도를 이용한 초음파 수동 공동 영상의 화질 개선)

  • Jeong, Mok Kun;Kwon, Sung Jae;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.450-458
    • /
    • 2019
  • Passive cavitation imaging method is used to observe the ultrasonic waves generated when a group of bubbles collapses. A problem with passive cavitation imaging is a low resolution and large side lobe levels. Since ultrasound signals generated by passive cavitation take the form of a pulse, the amplitude distribution of signals received across the receive channels varies depending on the direction of incidence. Both the centroid and flatness were calculated to determine weights at imaging points in order to discriminate between the main and side lobe signals from the signal amplitude distribution of the received channel data and to reduce the side lobe levels. The centroid quantifies how the channel data are distributed across the receive channel, and the flatness measures the variance of the channel data. We applied the centroid weight and the flatness to the passive cavitation image constructed using the delay-and-sum focusing and minimum variance beamforming methods to improve the image quality. Using computer simulation and experiment, we show that the application of weighting in delay-and-sum and minimum variance beamforming reduces side lobe levels.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.