• Title/Summary/Keyword: Ultrasound power

Search Result 194, Processing Time 0.022 seconds

The Use of Contrast-Enhanced Color Doppler Ultrasound in the Differentiation of Retinal Detachment from Vitreous Membrane

  • Sang-Suk Han;Seung-Kook Chang;Jung-Hee Yoon;Young-Joon Lee
    • Korean Journal of Radiology
    • /
    • v.2 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • Objective: To compare the clinical utility of contrast-enhanced color Doppler US in the differentiation of retinal detachment (RD) from vitreous membrane (VM) with that of various conventional US modalities, and to analyze the enhancement patterns in cases showing an enhancement effect. Materials and Methods: In 32 eyes examined over a recent two-year period, RD (n=14) and VM (n=18) were confirmed by surgery (n=28) or clinical follow-up (n=4). In all cases, gray-scale, color Doppler, and power Doppler US were performed prior to contrast injection, and after the intravenous injection of Levovist (Schering, Berlin) by hand for 30 seconds at a dose of 2.5 g and a concentration of 300 mg/mL via an antecubital vein, contrast-enhanced color Doppler US was performed. At Doppler US, the diagnostic criterion for RD and VM was whether or not color signals were visualized in membranous structures. Results: Diagnostic accuracy was 78% at gray-scale US, 81% at color Doppler US, 59% at power Doppler US, and 97% at contrast-enhanced color Doppler US. The sensitivity of color Doppler US to color signals in RD increased from 57% to 93% after contrast enhancement. The enhancement patterns observed were signal accentuation (n=3), signal extension (n=2), signal addition (n=3), and new signal visualization (n=5). Conclusion: Contrast-enhanced color Doppler US was the most accurate US modality for differentiating RD from VM, showing a significantly increased signal detection rate in RD.

  • PDF

Effects of Heat Treatment and Extraction Method on Antioxidant Activity of Several Medicinal Plants (열처리와 추출방법에 따른 몇 가지 약초의 항산화 활성)

  • Jang, Gwi-Yeong;Kim, Hyun-Young;Lee, Sang-Hoon;Kang, Yu-Ri;Hwang, In-Guk;Woo, Koan-Sik;Kang, Tae-Soo;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.914-920
    • /
    • 2012
  • We investigated the effects of heat treatment and extraction method on the antioxidant activities of five medicinal plants: Cyperus rotundus, Eucommia ulmoides, Bupleurum falcatum, Achyranthes japonica Nakai, and Akebia quinata. Extraction was performed with only ultrasound, ultrasound after heating at $130^{\circ}C$ for 2 hours, and reflux extraction with distilled water. The phenolic contents of reflux extraction and ultrasound extraction after heating were higher than only ultrasound extraction, and ultrasound extraction after heating samples was higher than reflux extraction except for Eucommia ulmoides and Cyperus rotundus. Total flavonoid content was higher in reflux and ultrasound extraction after heating samples than only ultrasound extraction, except for Cyperus rotundus. ABTS radical scavenging activity was higher in reflux extraction and ultrasound extraction after heating a sample, than only ultrasound extraction. DPPH radical scavenging activity was higher in reflux extraction except for Achyranthes japonica Nakai and Akebia quinata. The reducing power of ultrasound extraction after heating was higher with Achyranthes japonica Nakai. From the results of this study, we can expect to increase the antioxidant activity of medicinal plant extracts by applying suitable extraction and pretreatment conditions on the type of medicinal plant.

Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 알고리즘을 위한 멀티코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.45-52
    • /
    • 2011
  • In the past, a patient went to the room where an ultrasound image diagnosis device was set, and then he or she was examined by a doctor. However, currently a doctor can go and examine the patient with a handheld ultrasound device who stays in a room. However, it was implemented with only fundamental functions, and can not meet the high performance required by the focusing algorithm of ultrasound beam which determines the quality of ultrasound image. In addition, low energy consumption was satisfied for the mobile ultrasound device. To satisfy these requirements, this paper proposes a high-performance and low-power single instruction, multiple data (SIMD) based multi-core processor that supports a representative beamforming algorithm out of several focusing methods of mobile ultrasound image signals. The proposed SIMD multi-core processor, which consists of 16 processing elements (PEs), satisfies the high-performance required by the beamforming algorithm by exploiting considerable data-level parallelism inherent in the echo image data of ultrasound. Experimental results showed that the proposed multi-core processor outperforms a commercial high-performance processor, TI DSP C6416, in terms of execution time (15.8 times better), energy efficiency (6.9 times better), and area efficiency (10 times better).

Implementation of an Optimal Many-core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 기법을 위한 최적의 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.119-128
    • /
    • 2011
  • This paper introduces design space exploration of many-core processors that meet high performance and low power required by the beamforming algorithm of image signals of mobile ultrasound. For the design space exploration of the many-core processor, we mapped different number of ultrasound image data to each processing element of many-core, and then determined an optimal many-core processor architecture in terms of execution time, energy efficiency and area efficiency. Experimental results indicate that PE=4096 and 1024 provide the highest energy efficiency and area efficiency, respectively. In addition, PE=4096 achieves 46x and 10x better than TI DSP C6416, which is widely used for ultrasound image devices, in terms of energy efficiency and area efficiency, respectively.

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

Ultrasound Imaging Improvement using Higher Harmonics of Impluse Sound (고조파음원에 의한 초음파영상의 해상도 개선)

  • Chang, Jee-Won;Yang, Jeong-Won;Kim, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.4
    • /
    • pp.292-300
    • /
    • 1993
  • Acoustical imaging has made brilliant progress in the medical science field, and has also made much progress in the nondestructive testing and under water acoustics applications since doctor Dussik brother has studied about possibilities of making images of brain by recording variations in the intensity of ultrasonic beam from head in 1937. In this paper an acoustical image is reconstructed with the power spectra analysed by impulse ultrasound wave generated by electrodynamic transducer(EDT). The EDT generates the impulse ultrasound of 77KHz in center frequency and 120KHz in bandwidth at -20dB by 1200V exciter in this experiment. The impulse ultrasound has the dominant frequency components of 47KHz, 177KHz, 110KHz and 155KHz. The U shape object is adopted in making an acoustical image. The resulted spectral acoustical images are different from the optical view of the U shape object. However the image reconstructed from 110KHz spectrum is very similar to the original optical shape of the object. Even KHz level impulse sound of 70$\mu$sec pulse width is found to be useful in reconstructing acoustical imaging improvement.

  • PDF

The Acoustic Output Estimation for Therapeutic Ultrasound Equipment using Electro-Acoustic Radiation Conductance (전기-음향 방사컨덕턴스를 이용한 치료용 초음파 자극기의 음향출력 예측)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • To increase therapeutic efficiency and biological safety, it is important to precision control of acoustic output for therapeutic ultrasound equipment. In this paper, the electro-acoustic radiation conductance, one of electroacoustic characteristics of therapeutic ultrasound equipment, was measured by the radiation force balance method according to IEC 61161 standards and the acoustic output was estimated using the electro-acoustic radiation conductance. The estimation of acoustic output was conducted to continuous wave mode and pulse wave mode of duty cycle between 20% and 80%. The differences between prediction values and measurement results are within 5% of measurement uncertainty, which is a reasonably good agreement. The results show that acoustic output controlled by electro-acoustic radiation conductance was found to be an effective method.

The Texture Classification of Liver Parenchyma Using the Fractal Dimension and the Fourier Power Spectrum (프랙탈 차원과 퓨리에 파워스펙트럼을 이용한 간조직 분류)

  • Jeong, Jeong-Won;Kim, Dong-Youn
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.37-41
    • /
    • 1995
  • In this paper, we proposed the 2-stage ultrasound liver image classifier which uses the fractal dimensions obtained from the original image and its 1/2 subsampled image, and the Normalized Fourier Power Spectrum. The fractal dimension based on Fractional Brownian Motion (FBM) is calculated from the variance of the same scale pixels instead of the mean of them. Since the actual ultrasound. liver images does not fully match the FBM, to get the fractal dimension, we use the scale vectors which satisfy the FBM model. In 2-stage classifier, we first classified normal and diffuse liver and then classified the fat liver and cirrhosis from the diffuse liver. For the test liver images. 70% of normal liver and 80% of fat liver and 90% of cirrhosis is classified classified with our 2-stage classifier.

  • PDF

The Impacts of Piezoelectric Elements' Defects On Color & Power Doppler Images (초음파 프로브에서 소자결함이 컬러 및 파워 도플러 영상에 미치는 영향)

  • Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2015
  • An ultrasound probe has a big impact on Doppler images even though it has very high risk of frequent function-breakdowns occurring in medical ultrasound scanners. This study experimentally analyses the impacts of an ultrasonic probe's defected elements on power & color Doppler images. The results show that, the bigger the size of defected probe elements is, and the closer a group of action elements is to the center, the more the brightness of images and the velocity of Doppler diminish. When elements' defects increase in color & power Doppler images, false images are formed to be mistaken for blood-vessel plaque in neighboring regions. Accordingly, whenever element defects are suspected, we need check-up process in B-mode. From this respective, it is advisable to have primary interest in a probe and carry out continuous probe QA for ultrasonography.

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF