• Title/Summary/Keyword: Ultrasonic welding

Search Result 241, Processing Time 0.02 seconds

Colorization of C-Scan Ultrasonic Image and Automatic Evaluation Algorithm of Welding Quality (C-Scan 초음파 영상 컬러화 및 용접 품질 자동 평가 시스템)

  • Kim, Tae-Kyu;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1271-1278
    • /
    • 2018
  • The NDT using ultrasonic is largely divided into A-Scan and C-Scan methods. Since A-Scan method is subject to subjective judgement by trained personnel, C-Scan method has been introduced, which presents the weld area in two dimensions by placing the transducers two dimensionally used in the A-Scan method. Therefore, it is necessary to develop equipment that can provide weld quality without the help of a welding expert and the presentation of effective C-Scan images. Thus, in this paper, the algorithms that express a low resolution 2-dimensional gray image formed by C-Scan method as a high-resolution color C-Scan image and automatically determine the weld quality from the generated C-Scan color image. The high resolution color C-Scan images proposed in this paper allow the exact shape of the weld point to be expressed, and an objective algorithm to use this image to automatically determine weld quality.

Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality (초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

Texture of Ultrasonic Weld Interface in Metals (초음파 용접 계면의 집합 조직)

  • 김인수;김성진;이민구;이응종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.73-80
    • /
    • 1996
  • Commerical purity aluminium , copper and STS 304 stainless steel sheets are welded by ultrasonic welding. The microstructures, x-ray diffraction profiles of planes , pole figures of the surface of original metal sheets are compared with those of the weld interface. The microstructures show disturbance and dark areas in the weld interface and grain refinement in the vicinity of the interface. The x-ray diffraction intensity of each plane in weld interface decreased in all metal sheets with exception of 9200) in steel sheet. The microstructure and x-ray diffraction intensity is affected by the mixture of deformation, heating and vibratin duringthe ultrasonic welding. Therefore, after the ultrasonic welding, the positions of the peak intensity in the pole figures are changed, the value of the maximum pole intensity is decreased in Al, is increased in copper and stainless steel. Very strong {100} <001> texture, strong {100} <001>,{123}<634> textures in original Al surface are transformed into weak, {100}<001>, {110}<112> and {112}<111> components in weld surface, weak (110) fiber is slightly changed to (110) fiber in copper, (100)and ${\gamma}$ fiber components are transformed into strong ${\gamma}$ fiber component in stainless steel.

  • PDF

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF

Longitudinal Ultrasonic Bonding of Strip-type Au Bumps (스트립 형상인 Au 범프의 종방향 초음파 접합)

  • 김병철;김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • The strip Au bumps are bonded using longitudinal ultrasonic far the electronic package. Au bumps on the chip and substrate are aligned in a crossed shape, and the ultrasonic is imposed on the chip to form the solid-state bond between the Au bumps. Deformed bump shapes are calculated using the finite element method, and the bond strength is measured experimentally. The crossed strip Au bumps are deformed similar to the saddle, which provides larger contact surface area and higher friction force. Compared with the previous bonding method between the Au bump and planar pad, higher bond strength is obtained using the crossed strip bumps.

The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws (용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교)

  • Yoon, Sung-Un;Kim, Chang-Hyun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

Design of Cylinder Horn for Ultrasonic Welding (초음파 용접용 실린더 혼의 설계)

  • Kim, Sun-Rak;Lee, Jae-Hak;Yoo, Choong-D.
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.60-66
    • /
    • 2009
  • The cylinder horn is designed to increase uniformity of the displacement on the output face through simulation and experiments for the simple cylinder, spool and step horns. The modal analysis is conducted numerically to calculate the vibration mode and stress distribution of the cylinder horn, and the design of experiment (DOE) technique is employed to determine the optimum configuration of the spool horn. Displacement of the cylinder horn was measured using the Laser Doppler Vibrometer (LDV), and experimental results show good agreements with the predicted results. It appears that uniformity higher than 95% can be achieved with the spool horn when the proper dimension of the groove is used.

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.