• Title/Summary/Keyword: Ultrasonic sound

Search Result 212, Processing Time 0.021 seconds

The Characteristics of Ultrasonic Signals for Detecting Micro-Defects in Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 내부 미소결함에 따른 초음파 신호 특성 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Kubota, M.;Murakami, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.591-597
    • /
    • 2001
  • Ti alloy is used for essential parts of aircraft for high temperature environment. Although Ti alloy has excellent performance in regard to mechanical properties, it is difficult ot find fatigue cracks by nondestructive ultrasonic inspection due to its two-phase microstructure, which consists of hard alpha and beta phases. Sound energy reflected from microstructural features in the component produces a background inspection noise which is seen even when no defects are present. This noise can inhibit the detection of critical internal defects such as pores cracks or inclusions. To obtain fundamental data on ultrasonic inspection of Ti alloy, ultrasonic testing was performed using a specimen with small drill holes and ultrasonic wave propagation velocites were measured.

  • PDF

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

A Research on Object Detection Technology for the Visually Impaired (시각장애인을 위한 사물 감지 기술 연구)

  • Jeong, Yeon-Kyu;Kim, Byung-Gyu;Lee, Jeong-Bae
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.225-230
    • /
    • 2012
  • In this paper, a blind person using a white cane as an adjunct of the things available sensing technology has been implemented. Sensing technology to implement things ultrasonic sensors and a webcam was used to process the data from the server computer. Ultrasonic sensors detect objects within 4meter people distinguish between those things that if the results based on the results will sound off. In this study, ultrasonic sensors, object recognition and human perception with the introduction of techniques and technologies developed for detecting objects in the lives of the visually impaired is expected to be greater usability.

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF

A study on ultrasound analysis of the transformer strange signal (변압기 이상음의 초음파 분석에 관한 연구)

  • 백화종;지석근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.835-838
    • /
    • 2002
  • A running high voltage equipments produce ultrasonic wave that has unique sound by the specific characteristics of the electricity. The generation of the ultrasonic wave is made by the electric transform like arcing, corona, and tracking so on. The mechanical losses and fatal human damages are happened by the electric failure of high voltage equipments. To prevent and diagnose the obstacle factors of the high voltage equipments, the measurement of the ultrasonic wave became to be prominent. However standardized data have been a deficient situation by now. This paper measures the ultrasonic wave coming from the real running transformer equipments and transforms it as an audio frequency. Measured data represents as frequency and time domain through the FFT(Fast Fourier Transform) transform. In conclusion, the purpose of this paper is to standardize the analyzed data.

  • PDF

Influence of Microstructure on Reference Target on Ultrasonic Backscattering (기준표적상의 미세구조가 초음파 후방산란에 미치는 영향)

  • Kim, Ho-Chul;Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.38-44
    • /
    • 2010
  • This paper is based on our comments and proposed amendments to the documents, Annex A, Phantom for determining Maximum Depth of Penetration, and Annex B, Local Dynamic Range Using Acoustical Test Objects 87/400/CDV. IEC 61391-2 Ed. 1.0 200X, prepared by IEC technical Committee 87; Ultrasonics. The documents are concerned with the influence of microstructure of reference target material on the ultrasonic backscattering. Previous works on the attenuation due to backreflection and backscattering of reference target materials are reviewed. The drawback to the use of ungraded stainless steel and metallic materials without microstructural data such as, crystal structure, basic acoustic data of sound velocity and attenuation, grain size, roughness and elastic constants has been discussed. The analysis suggested that the insightful conclusion can be made by differentiating the influence arising from target size and microstructure on the backscattering measurements. The microstructural parameters are associated with physical, geometrical, acoustical and mechanical origins of variation with frequency. Further clarification of such a diverse source mechanisms for ultrasonic backscattering would make the target material and its application for medical diagnosis and therapy simpler and more reliable.

Acoustic Power Measurement System of Array Probes for Ultrasonic Diagnostic Equipment Using Radiation Force Balance Methods (방사힘 측정법을 이용한 초음파 진단장치용 배열 탐침자의 음향파워 측정시스템)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.355-364
    • /
    • 2010
  • Considering biological safety, it is very important to measure acoustic power from ultrasonic array probe for diagnostic ultrasound imaging applications. In this paper, to measure acoustic power from each element on array probe for ultrasonic diagnostic equipment, we reconstruct and automate the acoustic power measurement system. The acoustic power from linear, phased and curved array were measured and analyzed. As a result of measurement, the effects caused by directivity of sound beam from curved array were founded. To remove these effects, we developed and applied the correction model. The proposed system is useful to evaluate characteristics of the acoustical output power of array probe.

Estimation of the Axial Stress in High-Tension Bolt by Acoustoelastic Method (음탄성법을 이용한 고장력 볼트의 축응력 평가)

  • Chun, Hae-Hwa;Lee, Tae-Hoon;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.285-290
    • /
    • 2006
  • The evaluation of clamping condition has been regarded as the main issue in the safety-maintenance of the clamped high-tension bolts. For this, this paper proposes a method to estimate the axial stress by measuring the TOF (Time-Of-Flight) of ultrasonic wave, which is based on the acoustoelasticity or the dependency of sound speed on the stress. In this method, however, the variation of sound speed within the range of stress induced under the field condition is very small, and thus the accuracy of the TOF measurement is important. We adopted the phase detection method using tone-burst ultrasonic wave to measure the precise TOF. In order to verify the usefulness of the proposed method experiments are carried out and the results were compared with the stress measured by the strain gage. The results show good agreement with each other, and from these we can conclude that the proposed method is highly useful fnr the evaluation of clamping condition in the clamped high-tension bolts.

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.