• 제목/요약/키워드: Ultrasonic image construction

검색결과 16건 처리시간 0.023초

APPLICATION OF DIGITAL ULTRASONIC IMAGE CONSTRUCTION SYSTEM FOR THE DETECTION OF CRACKS IN WATER DISTRIBUTION SYSTEM

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Shin, Hyeon-Jae;Jang, You-Hyun
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.99-105
    • /
    • 2006
  • A digital ultrasonic image construction system was developed for the nondestructive detection of cracks in water distribution pipes. The system consists of PC based ultrasonic testing system and a scanning device. The PC based ultrasonic system has an ultrasonic pulse/receive board for the generation and reception of ultrasonic signals, an analogue to digital conversion board for the digitization of the received ultrasonic signals, and transducers for the ultrasonic sensors. Using this system, the digitized ultrasonic signals were properly constructed in accordance with the position information obtained by scanning device that moves an ultrasonic transducer along the outer surface of pipes. In the construction of the ultrasonic signals, signal processing concepts, such as spatial average and array concept, were considered to enhance the resolution of ultrasonic images of pipe wall. Using the developed system, crack detection experiments were performed in both laboratory and field, which shows promise for crack detection in the water distribution system.

콘크리트 균열 깊이와 이미지 특성정보간의 상관성 분석 (Correlation Analysis between Crack Depth of Concrete and Characteristics of Images)

  • 정서영;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.162-163
    • /
    • 2021
  • Currently, the depth of cracks is measured using ultrasonic detectors in maintenance practice. This method consists of measuring the depth of cracks by attaching ultrasonic depth measuring equipment to the concrete surface, and there are restrictions on the timing and location of the inspection. These limitations can be addressed through the development of image-based crack depth measurement AI technology. If crack depth measurements are made based on images, restrictions on the timing and location of inspections can be lifted because images acquired with simple filming equipment can be used as input information. To efficiently develop these artificial intelligence technologies, it is essential to identify the interrelationship between crack depth measurements and image characteristic information. Thus, this study is a basic study of the development of image-based crack depth measurement AI technology and aims to identify image characteristic information related to crack depth.

  • PDF

초음파 홀로그램의 구성과 컴퓨터 영상재현 (The Construction of Ultrasonic Hologram and the Image Reconstruction Using Computer)

  • 장성환;고대식;전계석
    • 한국음향학회지
    • /
    • 제8권4호
    • /
    • pp.23-28
    • /
    • 1989
  • 본 논문에서는 컴퓨터에 의한 초음파 홀로그램의 구성과 영상 재생방법을 연구하였으며 이를 광학적 재생방법과 비교 분석하였다. 초음파 홀로그램은 초음파 변환자를 기계적으로 c-scan $(128\times128 step)$하여 구성하였고 물체에 대한 영상은 Rayleigh-Sommerfeld 식과 DFT 알고리즘을 이용하여 컴퓨터 재생하였다. 본 실험에서 는 중심주파수가 5MHz이고 촛점 거리가 5cm 인 초음파 변환자와 기계적인 c-scanning 시스템을 사용하여 음향 홀로그래피 시스템을 구성하였고 알루미늄 판에 S자 형태를 새긴 샘플을 제작하여 실험하였다. 실험결과 컴퓨터에 의해 재생된 영상은 실체와 동일한 고질의 영상임을 확인하였다.

  • PDF

초음파 화상처리기법을 이용한 콘크리트 내부공동의 형상검출에 관한 연구 (Detecting Pattern of Voids in Concrete Using Ultrasonic Image Processing Technique)

  • 박석균;이한범;오윤식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.783-788
    • /
    • 2001
  • Voids created with concrete construction or deterioration result in serious weakness from the aspects of both structural and durable function. Ultrasonic method using image processing technique was used for detecting pattern of voids in concrete in this study Experimental investigation was carried out for three types(patterns) of void in concrete. The effect of curing period of concrete and ultrasonic measurement method was also investigated. As a result it has been verified that the semi-direct measurement method is more effective than the other methods for detecting pattern of voids in concrete in ultrasonic method using image processing technique. The longer the curing period of concrete is, the better the detection accuracy of void pattern can be obtained.

  • PDF

초음파법을 이용한 콘크리트 역타시공 이음부 공극의 화상검출특성 (Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method)

  • 박석균;백운찬;이한범;김명모
    • 비파괴검사학회지
    • /
    • 제20권4호
    • /
    • pp.290-295
    • /
    • 2000
  • 최근 역타시공법 등에 의한 콘크리트 구조물의 시공이 증가 추세에 있다. 이 경우, 자주 발생되는 신 구타설 콘크리트 시공이음부의 공극은 향후 구조물의 구조적인 특성과 내구성 등에 큰 영향을 미치게 된다. 그러나 현재 제안되고 있는 비파괴 검사법으로는 효과적으로 이음부 공극을 평가하기에 많은 한계가 있다. 본 연구에서는 시공이음부의 콘크리트 충전상태를 평가하기 위해 철골철근 콘크리트와 무근 콘크리트 시험체내에 공극을 모의제작한 후, 초음파속도 측정을 실시하고, 화상처리기법을 이용하여 비교적 용이하게 해석 가능한 방법에 대해 검토하였다.

  • PDF

미소 결함 평가를 위한 지능형 데이터베이스 구축에 관한 연구 (A Study about the Construction of Intelligence Data Base for Micro Defect Evaluation)

  • 김재열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.585-590
    • /
    • 2000
  • Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon. Numeral information was deduced and quantified effective information from the image. Also, pattern recognition of a defected input image was performed by neural network algorithm. Input pattern of various numeral was composed combinationally, and then, it was studied by neural network. Furthermore, possibility of pattern recognition was confirmed on artifical defected input data formed by simulation. Finally, application on unknown input pattern was also examined.

  • PDF

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

  • Choi, Myoung Hwan;Bae, Moo Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1418-1425
    • /
    • 2014
  • In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic probe element is rotated mechanically and the beam steering is achieved mechanically. In the spatial compounding, target position is computed using the value of the rotation axis and the transducer array angular position. However, in the process of the rotation mechanism construction and the control system there arises the inevitable uncertainties in these values. These geometric parameter errors result in the target position error, and the consequence is a blurry compounded image. In order to reduce these target position errors, we present a spatial compounding scheme where error correcting transformation matrices are computed and applied to the raw images before spatial compounding to reduce the blurriness in the compounded image. The proposed scheme is illustrated using phantom and live scan images of human knee, and it is shown that the blurriness is effectively reduced.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.

용접결함 검사 자동화 시스템 구축에 관한 연구 (A Study on Construction of Automatic Inspection System for Welding Flaws)

  • 김창현;유홍연;홍성훈;김재열
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.37-42
    • /
    • 2007
  • The purpose of this research is stability estimation of plant structure through classification and recognition about welding flaw in SWP(Spiral Welding Pipe). And, In this research, we used nondestructive test based on ultrasonic test as inspection method, and made up 2-axes inspection robot in order to control of ultrasonic probe on the SWP surface, and programmed to image processing and probabilistic neural network(PNN) classifying code by MATLAB programming. Through this process, we proved efficiency on the system of SWP stability Estimation.

초음파 반사신호의 복소 진폭을 이용한 교체 내부 결함의 영상 구조 (The image construction of the surface and subsurface defects using complex amplitude of the reflected ultrasonic signals from the solid)

  • 김현;임호;김기열;구길모
    • 정보학연구
    • /
    • 제4권2호
    • /
    • pp.129-136
    • /
    • 2001
  • 초음파현미경은 대부분 단순히 시료로부터 반사된 신호의 진폭만을 이용하여 초음파영상을 구성하였다. 그러나 이 방법은 미세한 변화를 가지는 시료에 대해서는 반사신호의 진폭변화가 민감하지 않음으로 인하여 영상의 질을 저하 시켰다. 본 연구에서는 초음파 반사신호의 진폭과 위상을 동시에 측정할 수 있는 초음파현미경 시스템을 구성하고 샘플로서 500원 주화와 내부에 원형결함이 존재하는 알루미늄 시료에 대해 진폭영상과 위상영상을 획득하고 이들을 상호 비교분석하였다. 실험결과, 위상영상은 미세한 높이변화에 대해서는 진폭영상에 비하여 민감한 반응을 보였고 콘트라스트가 좋은 영상을 얻을 수 있었다. 이와같은 실험결과로 위상영상은 미세변화를 갖는 시료에 대한 비파괴검사시 진폭영상으로 얻어진 영상의 모호성을 개선하는 보조도구로서 활용이 기대된다.

  • PDF