• 제목/요약/키워드: Ultrasonic System

검색결과 1,519건 처리시간 0.028초

초음파 노즐의 최적 구동 특성 (Optimum Driving Characteristics of U1trasonic Nozzle)

  • 김화수;이상호;황락훈;류주현;김국진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.272-273
    • /
    • 2007
  • In this paper, ultrasonic nozzle and driving circuit were manufactured, respectively. And then, their electrical properties. were investigated. Ultrasonic nozzle was fabricated using PSN-PMN-PZT ceramics showing excellent piezoelectric characteristics. In order to drive ultrasonic nozzle, PWM controller(KA3525A) was used. The purpose of this study is to find the optimal driving condition of ultrasonic. nozzle. Accordingly electrical and temperature characteristic of ultrasonic driving system were investigated as a function of the input voltage.

  • PDF

시각 장애우를 위한 Wearable Computing System (Wearable Computing System for the bland persons)

  • 김형호;최선희;조태종;김순주;장재인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.261-263
    • /
    • 2006
  • Nowadays, technologies such as RFID, sensor network makes our life comfortable more and more. In this paper we propose a wearable computing system for blind and deaf person who can be easily out of sight from our technology. We are making a wearable computing system that is consisted of embedded board to processing data, ultrasonic sensors to get distance data and motors that make vibration as a signal to see the screen for a deaf person. This system offers environmental informations by text and voice. For example, distance data from a obstacle to a person are calculated by data compounding module using sensed ultrasonic reflection time. This data is converted to text or voice by main processing module, and are serviced to a handicapped person. Furthermore we will extend this system using a voice recognition module and text to voice convertor module to help communication among the blind and deaf persons.

  • PDF

초소형 초음파 선형 모터의 조립 자동화를 위한 지능형 민첩 생산시스템 (Agile and Intelligent Manufacturing System for Automatic Assembly of a Tiny Ultrasonic Actuator)

  • 김원;강희석;조영준;이규봉;정지영;서일홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.607-608
    • /
    • 2006
  • This article deals the development of Agile and Intelligent Manufacturing System(AIM) for the assembly automation of a tiny ultrasonic actuator used in camera phones and PDAs. The system consists of multi-vision modules, end-effectors, a standard base frame, dispensers, jigs and modular manipulators. Subsystems are a vision system, a force control system and a virtual reality system. Experimental results show that the assembly process for the small components in the various IT applications can be realized by the AIM system.

  • PDF

펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구 (A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer)

  • 홍경민;강영준;박락규
    • 비파괴검사학회지
    • /
    • 제33권2호
    • /
    • pp.160-164
    • /
    • 2013
  • 레이저 초음파검사 장치는 레이저 빔을 이용하여 초음파 신호를 발생시키고 측정하는 비접촉식 결함 검사 장치이다. 이 장치는 펄스 레이저 빔을 이용하여 광대역 주파수 범위를 갖는 초음파 신호를 발생시키고 작은 점으로 집속된 레이저 빔을 이용하여 초음파 신호를 측정하므로 우수한 측정 분해능을 제공한다. 본 연구에서는 이종금속 접촉부식(갈바닉 부식) 현상을 레이저를 이용한 비파괴, 비접촉 방법으로 측정하였다. 부식된 부분에 이물질이 혼합되는 경우를 가정하고, 레이저 초음파 실험을 진행하였다. 시편의 뒷면에서 펄스 레이저로 초음파를 발생시키고, 같은 위치의 앞면에서 CW 레이저와 CFPI를 이용하여 초음파 신호를 획득하였다. 이물질이 존재하는 부분의 초음파 신호 특성을 분석하여 이물질의 위치 및 크기를 측정하였다.

초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템 (Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes)

  • 박종현;추영열
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

iGS를 이용한 모바일 로봇의 실내위치추정 알고리즘 (Localization Algorithm for a Mobile Robot using iGS)

  • 서대근;조성호;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.242-247
    • /
    • 2008
  • As an absolute positioning system, iGS is designed based on ultrasonic signals whose speed can be formulated clearly in terms of time and room temperature, which is utilized for a mobile robot localization. The iGS is composed of an RFID receiver and an ultra-sonic transmitter, where an RFID is designated to synchronize the transmitter and receiver of the ultrasonic signal. The traveling time of the ultrasonic signal has been used to calculate the distance between the iGS system and a beacon which is located at a pre-determined location. This paper suggests an effective operation method of iGS to estimate position of the mobile robot working in unstructured environment. To expand recognition range and to improve accuracy of the system, two strategies are proposed: utilization of beacons belonging to neighboring blocks and removal of the environment-reflected ultrasonic signals. As the results, the ubiquitous localization system based on iGS as a pseudo-satellite system has been developed successfully with a low cost, a high update rate, and relatively high precision.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

용접크랙검사용 비파괴 초음파탐상 자동화검사장비 개발 (Development of Automated Non-Destructive Ultrasonic Inspection Equipment for Welding Crack Inspection)

  • 채용웅
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.101-106
    • /
    • 2020
  • 본 연구는 다양한 어셈블리 부품의 용접부 내부결함을 검사하기 위한 초음파 탐상 장비 개발에 관한 것이다. 본 연구에서는 초음파 탐상을 위하여 시스템의 모션제어 S/W, 초음파 송수신기 제어, 결함 판정 기준 설정 등의 계측 S/W 등이 설계되었으며, 양품과 불량품의 비교분석을 하기 위하여 용접결함 불량품 샘플워크 등도 제작되었다. 이와 같은 구성으로 이루어진 시스템을 통하여 어셈블리 부품 용접부의 결함 위치 및 깊이에 대한 자동검사 기능을 수행할 수 있었으며, 종전에 전문가에 의해 이루어졌던 용접부의 내부결함에 대한 판단을 시스템이 수행하도록 하였다.

초음파의 형상인식법을 이용한 저널베어링의 마멸파손 검지 (The Early Detection of Journal Bearing Failures by a Pattern Recognition of Ultrasonic Wave)

  • 윤의성;손동구;안효석
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2061-2068
    • /
    • 1993
  • Condition monitoring technology is of great importance for the maintenance of complex machinery in view of its early monitoring of the abnormal condition and the protection against failure. Several methods have been used for the detection of failure of journal bearings, one of the main elements of mechanical system. The methods most frequently used are vibration and temperature monitoring, but these are unable to monitor the wear conditions exactly. In this study, an ultrasonic measument method, one of the non-destructive testing methods, was introduced as the monitoring technology. Furtermore a pattem recognition method was applied to analyze the ultrasonic signal. The monitoring system using the pattern recognition method is composed of digital signal processing units and uses Hamming net algorithm for the recognition of ultrasonic waves. From the journal bearing wear test, the occurrence of adhesive wear of the white metal in rubbing contact with the shaft was exactly detected by this system, and the wear status of the journal bearing was monitored by measuring the wear thickness.

초음파위성시스템을 위한 개선된 위치추정 알고리즘 (Improved Localization Algorithm for Ultrasonic Satellite System)

  • 윤강섭
    • 한국전자통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.775-781
    • /
    • 2011
  • 실내에서 이동로봇의 절대위치 측정을 위해서 초음파를 이용하는 초음파 위치측정 시스템이 많이 연구되고 있다. 이러한 초음파 위치측정 시스템들은 초음파의 혼신을 피하기 위해 순차 발신하는 방법을 사용하고 있다. 그러나 이러한 순차 발신으로 인해 이동로봇이 이동하는 경우에는 초음파의 수신위치가 변하므로 위치측정 정도가 떨어지게 된다. 본 논문에서는 수신시점에 따른 가중치를 적용하는 새로운 위치추정 알고리즘을 제안하였다. 그리고 제안된 알고리즘을 기존의 초음파위성시스템에 적용하여 개선된 초음파위성시스템을 구축하였다. 그리고 실험을 통하여 제안된 알고리즘을 가진 개선된 초음파위성시스템의 위치측정 성능을 입증하였다.