• Title/Summary/Keyword: Ultrasonic Method

Search Result 2,080, Processing Time 0.023 seconds

COMPARISON OF SIGNAL PROCESSING TECHNIQUES FOR UT-NDE ON NUCLEAR POWER PLANTS

  • Lee, Young-Seock;Kim, Se-Dong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • This paper deals with the comparison of signal processing techniques of ultrasonic data. The goal of signal processing is the ultrasonic speckle suppression and the visibility enhancement of flaw-reflected ultrasonic echo. The performance of conventional SSP(split spectrum processing) method and the wavelet denoising method are compared and discussed for tested ultrasonic data. Tested ultrasonic data obtained from the weld area of centrifugal-casted stainless steel material and safe-ending material with holes and notch of variable depths are presented. In experimental results, the outputs of wavelet-based denoising method show the clear and sharp peaks at the positions of flaw-reflected echos comparing with those of SSP method.

  • PDF

Ultrasonic Distance Measurement Method by Using the Envelope Model of Received Signal Based on System Dynamic Model of Ultrasonic Transducers

  • Choe, Jin-Hee;Lee, Kook-Sun;Choy, Ick;Cho, Whang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.981-988
    • /
    • 2018
  • In order to acquire an accurate TOF, this paper proposes a method that produces TOF by using a mathematical model for the envelope of the received signal obtained from a system dynamic model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical envelope model. Experimental result shows that the error due to variation of triggering point can be dramatically decreased by implementing the proposed method.

Indoor Environment Recognition Method for Indoor Autonomous Mobile Robot (실내 자율주행 로봇을 위한 실내 환경 인식방법)

  • Lee Man-Hee;Cho Whang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.366-371
    • /
    • 2005
  • For an autonomous mobile robot localization, it is very important for the robot to be able to recognize indoor environment and match a detected object to an object defined within a map developed either online or of offline. Given the map defining the locations of geometric beacons like wall and corner existing in the robot operation environment, this paper presents a stereo ultrasonic sensor based method practically applicable in recognizing the geometric beacons in real-time. The stereo ultrasonic sensor used in the experiment consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter Experimental results are provided to demonstrate that the proposed method is more efficient in recognizing wall and coner than the conventional method of using multiple number of transmitter-receiver pairs.

Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor by Varying the Size of Elastic Material (탄성체의 크기 변화에 따른 L1-B4형 초음파 리니어 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good.

  • PDF

Diriving Characteristic of Ll-B4 Type Ultrasonic Linear Motor (L1-B4 초음파 리니어 모터의 동작 특성)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.730-733
    • /
    • 2004
  • An ultrasonic linear motor was composed af a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. $L_1-B4$ ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and diriving characteristics. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated an experimented. as results When width was 5[mm], the driving characteristics was good

  • PDF

Modeling of Soldering Process using Longitudinal Ultrasonic (종방향 초음파를 이용한 솔더링 공정의 모델링)

  • 김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.534-539
    • /
    • 2003
  • An efficient soldering process using the longitudinal ultrasonic vibration is introduced in this work for electronic packaging. The effects of the process parameters such as the ultrasonic frequency, amplitude, dimension of the metal bump and solder are analyzed through a viscoelastic lumped model. The viscoelastic properties of the eutectic solder were measured for calculation and evaluation of heat generation capability of the solder. Experiments were conducted to verify the possibility of the proposed ultrasonic soldering method by inserting the Cu and Au bumps into the solder block. Localized heating due to ultrasonic vibration melts the solder near the metal bump, which demonstrates the applicability of the ultrasonic soldering method to the high-density electronic packaging.

A Study for the Synthesis and Characterization of $\gamma$-Alumina Powder by Ultrasonic Irradiation (초음파 조사에 의한 감마 알루미나 분말의 합성 및 특성에 관한 연구)

  • Park, Hee-Chan;Park, Jae-Hyun;Kim, Byoung-Woo;Lee, Sang-Eun;Kim, Jun-Ho;Park, Seong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.921-927
    • /
    • 2001
  • An effect of ultrasonic irradiation for the extraction and synthesis of alumina from kaolin was investigated by comparing ultrasonic irradiation method and conventional method with the same factors as reaction time, reaction temperature, and acid concentration. The ultrasonic irradiation method accelerated alumina extraction in comparison to conventional method at $60{\sim}80^{\circ}C$ for $1{\sim}6\;h$ in $1{\sim}5\;M$ ${H_2}{SO_4}$. The characteristics of precipitates and calcined samples, synthesized under the ultrasonic irradiation method and the conventional method, were determined by the means of DTA/TG, XRD, SEM, PSA, BET, etc. Especially, the calcined sample synthesized under the ultrasonic irradiation method had smaller particle size and larger surface area than that synthesized under the conventional method.

  • PDF

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

Development of humic acid extraction method in soil and sediment using ultrasonic for 14C dating (초음파를 이용한 14C 연대측정 토양시료의 부식산 추출법 개발)

  • Park, Jiyoun;Hong, Wan;Park, Junghun
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • To improve the carbon recovery yield of chemical pretreatment in soil and sediment for $^{14}C$ age dating using AMS (Accelerator Mass Spectrometry), we have developed ultrasonic method in chemical pretreatment to replace with stirring method which has been generally used in each step of humic acid extraction for soil and sediment samples. Extraction conditions such as ultrasonic power, temperature and reaction time have been optimized. Six times higher carbon recovery yield could be obtained from low carbon content samples using ultrasonic method. We also compared the dating results by AMS obtained using ultrasonic method with the ages of samples treated by the stirring method. It was found that this new method could be applied to the pretreatment process of low carbon content samples for AMS age dating without effects on the dated ages, and with highly improved carbon recovery yields.

Fabrication and Simulation of Displacement Properties of Ultrasonic Generator Handpiece (초음파 절삭기 핸드피스부 제작 및 변위 특성 시뮬레이션)

  • Kim, Seung-Won;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.152-155
    • /
    • 2018
  • Ultrasonic wave technologies have been widely used in ultrasonic washing machines, ultrasonic surgery, ultrasonic welding machines, ultrasonic sensors, and medical instruments. Ultrasonic surgery can be realized through the cavitation effect of ultrasonic waves. In this study, piezoelectric ceramics were manufactured to achieve the optimum design of a piezoelectric vibrator in a handheld generator for ultrasonic surgery. The best specimen showed the excellent piezoelectric properties of kp=0.624, Qm=1,531, and $d_{33}=356pC/N$. Numerical modeling based on the finite element method was performed to find the resonance frequency, the anti-resonance frequency, and the displacement properties of the handheld ultrasonic generator. Maximum displacement was observed in the six-step piezoelectric vibrator at $6.36{\mu}m$.