• Title/Summary/Keyword: Ultrasonic Machining

Search Result 95, Processing Time 0.024 seconds

Vibration Electrochemical Polishing for Localized Surface Leveling (미세표면 평활화를 위한 진동 전기화학 폴리싱)

  • Kim, Uksu;Kim, Youngbin;Park, Jeongwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • This study demonstrates a novel hybrid surface polishing process combining non-traditional electrochemical polishing(ECP) with external artificial ultrasonic vibration. ECP, typical noncontact surface polishing process, has been used to improve surface quality without leaving any mechanical scratch marks formed by previous mechanical processes, which can polish work material by electrochemical dissolution between two electrodes surfaces. This research suggests vibration electrochemical polishing(VECP) assisted by ultrasonic vibration for enhancing electrochemical reaction and surface quality compared to the conventional ECP. The localized roughness of work material is measured by atomic force microscopy(AFM) for detailed information on surface. Besides roughness, overall surface quality, material removal rate(MRR), and productivity etc. are compared with conventional ECP.

Development of Ultra-precision Ultrasonic Surface Machining Device Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초정밀 초음파 표면가공기 개발)

  • Kim, Gi-Dae;Loh, Byung-Gook;Kim, Jeong-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.29-35
    • /
    • 2006
  • Various types of elliptical motions are generated by PZT mechanism which is composed of two parallel piezoelectric actuators. Elliptical vibration cutting(EVC) is obtained by attaching single crystal diamond cutting tool to the mechanism, and V-grooving for Brass and Aluminum is carried out by applying the EVC. It is experimentally observed that the cutting force in the process of the EVC reduces compared to the ordinary non-vibration cutting, which is due to the decrease of undeformed chip thickness and frictional force between the tool and chip. Ultrasonic elliptical vibration cutting(UEVC) suppresses burr formation and decreases cutting force still more, so UEVC makes it possible to enhance the shape accuracy of machined surface.

  • PDF

A Study on Ultrasonic Vibration Cutting of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 초음파 진동절삭에 관한 연구)

  • 김정두;이은상;최인휴
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 1994
  • The main applications of CFRP are sports, aerospace and general industrial uses including automobiles. As this application fields expands the opportunity of machining, but CFRP is difficult to cut because of delamination of the composites and the short tool life. In this paper, the machinability of multidirectional CFRP by means of ultrasonic vibration cutting, which has been verified experimentally investigated.The experimentally to be highly effective in view of cutting force and surface quality.

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

Development of Inspection Technology for the Depth Sizing on Surface Flaw of Pump Diffuser Vane (펌프 Diffuser Vane 표면결함 깊이측정 기법 개발)

  • Park, Cher-Young;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.46-49
    • /
    • 2008
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the pre-service or in-service examinations shall be sized for the purpose of analysis and repair. A flaw that is initiated from the surface is difficult to determine its depth by NDE. The depth of the surface flaw can be measured using an ultrasonic diffracted wave. To find the optimum standard for ultrasonic parameter(For example, frequency & size of transducer), a mock-up test and simulation were established and studied. This inspection technology may show the depth sizing possibility of the flaw down to nearly two(2) mm.

  • PDF

Development of Micro Mixing Device with Using Ultrasonic Wave (초음파를 이용한 마이크로 혼합기 제작)

  • Jeon, Yongho;Choi, Byung-Joo;Kang, Seung-Joon;Kim, Dong-Kwon;Kim, Hyun-Jung;Lee, Moon Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.459-464
    • /
    • 2013
  • The purpose of a micro-mixing device is to enhance the mixing by increasing the diffusion effect between different types of flows. There have been many attempts to actively or passively increase mixing. However, those studies were limited to lab-scale experiments because the production of devices requires a series of processes, time, cost, and the mixing quality itself. For this reason, this study attempted to develop a quick and simple process for micro-mixing device fabrication by using conventional machining and bonding processes and applying ultrasonic waves from the outside of the mixing device. The mixing quality was quantified by using the mixing index, and the results showed that the proposed system increases the mixing from ~33% to ~10% with respect to the flow rates.

Fabrication of Micro-Shapes Using EDM and Ultrasonic Machining (미세형상가공을 위한 방전ㆍ초음파 가공기술)

  • 주종남;김규만;김성윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.20-27
    • /
    • 2000
  • 한국은행의 지식기반산업의 국민 경제적 역할 분석에 따르면, 91년부터 99년까지 지식기반산업의 연평균 성장률은 13.7%로 다른 산업의 4.1%보다 3배 이상 높은 것으로 조사되었다. 그중 항공기, 사무계산 및 회계용 기기, 의약품, 영상 음향 통신장비 등 첨단제조업은 이 기간 중 연평균 20.1% 성장을 기록하였다. 이와 같은 첨단제조업에서는 제품 내 부품의 정밀가공 기술이 필수적이다. 그 중에서도 미세 가공에 대한 관심은 지속적으로 증가하고 있는 추세이다.(중략)

  • PDF

A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry (스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구)

  • Cho, Jun-Hyun;Park, Sang-Hyun;An, Beom-Sang;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

Inspection of Heat Exchanger Tubing Defects with Ultrasonic Guided Waves (유도초음파를 이용한 열 교환기 튜브 결함 탐상)

  • Shin, Hyeon-Jae;Rose, Joseph L.;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study shows the defect detection and sizing capability of ultrasonic guided waves in the nondestructive inspection of heat exchanger and steam generator tubing. Phase and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel tube were presented for the theoretical analysis. EDM(Electric Discharge Machining) wears in tubing under a tube support plate and circumferential laser notches in tubing were detected by an axisymmetric and a non-axisymmetric transducer set up, respectively. EDM wears were detected with L(0, 2), L(0, 3) and L(0, 4) modes and among them L(0, 4) mode was found to be the most sensitive. It was also found that the flexural modes around L(0, 1) mode could be used for the detection and sizing of laser notches in the tubing.

  • PDF