• Title/Summary/Keyword: Ultrasonic Intensity

Search Result 165, Processing Time 0.021 seconds

Haptic recognition of the palm using ultrasound radiation force and its application (초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용)

  • Kim, Sun Ae;Kim, Tae Yang;Lee, Yeol Eum;Lee, Soo Yeon;Jeong, Mok Kun;Kwon, Sung Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.467-475
    • /
    • 2019
  • A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

A Study on Numerical Analysis and Wall Thinning Effect in Accordance with the Eddy Current of MFIV Lower Body (주급수격리밸브 하부몸체의 와류현상에 따른 감육영향 및 수치해석 연구)

  • Hwang Kyeong-Mo;Jin Tae-Eun;Kim Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.707-714
    • /
    • 2006
  • A numerical analysis study has performed in terms of fluid dynamics to identify the wall thinning generated in the main feedwater isolation valve body of a nuclear power plant. To review the relations between flow characteristics and the wall thinning induced by flow accelerated corrosion (FAC), numerical analysis using FLUENT code and ultrasonic tests (UT) were performed. The local velocities according to the analysis results were compared with the distribution of the measured wall thickness by ultrasonic tests. The comparison results show that the local velocity in the x-direction had no correlation with the wall thinning but the local velocity in the y-direction and turbulence intensity had a great influence on that. These results provide a good match to those of the previous studies - locations colliding vertically against components undergo severe wall thinning. These results may be utilized to the design modification and the wall thinning management for main feedwater isolation valves for preventing the wall thinning degradation.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Effect of Novel High-Intensity Ultrasound Technique on Physio-Chemical, Sensory Attributes, and Microstructure of Bovine Semitendinosus Muscle

  • Eun Yeong Lee;Dhanushka Rathnayake;Yu Min Son;Allah Bakhsh;Young Hwa Hwang;Jeong Keun Seo;Chul Beom Kim;Seon Tea Joo
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.85-100
    • /
    • 2023
  • The present study aimed to evaluate the effects of high-intensity ultrasound (HIU) application on meat quality traits, sensory parameters, and the microstructure of semitendinosus muscle from Hanwoo cattle. The samples were treated in an ultrasonic bath (35 kHz) at an intensity of 800 W/cm2 for 60 min, followed by aging at 1℃ for 0, 3, and 7 days. The application of ultrasound resulted in lower Warner-Bratzler shear force and higher myofibrillar fragmentation index values during the storage period. HIU also enhanced the tenderness, flavor, umami, and overall acceptability of cooked beef muscle. However, the electronic tongue evaluation results showed higher umami values in the control treatment on the seventh day of storage. The microstructure of sonicated meat showed disorganized myofibrillar architecture and swelling in the A-band region of sarcomeres during the storage period, which led to greater meat tenderness. The heatmap illustrated the high abundance of α-linolenic acid (C20:5n3) and eicosapentaenoic acid (C18:3n3) in sonicated meat samples on the third day of the storage. These results showed that HIU is a potential method for tenderizing and improving the sensory attributes of beef without compromising other quality aspects.

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

A Study on the ultrasonic signals analysis for scan fish schools and seabed targets (어군 및 해저 목표물 탐지를 위한 초음파 신호분석에 관한 연구)

  • Kim Jae-Gab;Kim Won-Jung;Yang Hwa-Sup;Jeong Chan-Ju
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.95-106
    • /
    • 1998
  • Color Echo-sounder display signals reflected from underwater objects in eight colors according to the strength of the signal. When the sea bottom is hard due to the presence of rocks, etc, the trailing on the reflection become strong signal and soft to presence of mud, etc the trailing on the reflection become weak signal. Strong signals are displayed in the color range, reddish brown, orange and yellow, in descending order of intensity. Weak signals are displayed in the range blue, light blue, cyan and green, in ascending order of intensity. Image of fish schools at or near the sea bottom vary according to the characteristics of the beam angle setting. When the angle is wide, even fish not near the bottom may be recorded as being on the seabed. A narrow angle should, therefore, be selected when you want to get an accurate recording of fish at or near the sea bottom. The condition of the sea bottom can be determinded more easily when the beam angle is wide and pulse with is long. Though the objects could be verified by the type of reflected signals which have been transformed into digital signals strong middle and weak ones, the experiments have in continue under various condition. Futhermore, the methode of measuring temperature inside the sea ought to be examined.

  • PDF

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

Gd$_2O_3$:Eu phosphor particles with spherical and filled morphology

  • Roh, Hyun-Sook;Kang, Yun-Chan;Park, Hee-Dong;Park, Seung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.253-256
    • /
    • 2002
  • $Gd_2O_3$:Eu phosphor particles were prepared by largescale ultrasonic spray pyrolysis process. The morphological control of $Gd_2O_3$:Eu particles in spray pyrolysis was performed by adding polymeric precursors into spray solution containing nitrate salts. The effect of composition and amount of polymeric precursors on the morphology, crystallinity, and photoluminescence characteristics of $Gd_2O_3$:Eu particles was investigated. The influence of chain length of PEG on the morphology and photoluminescence intensity was investigated. $Gd_2O_3$:Eu particles prepared from aqueous solution containing no polymeric precursors had a hollow structure and rough surfaces after annealing process. The phosphor particles prepared from solution containing 0.1M CA and 0.lM PEG with high molecular weight as 1,500 had a spherical and filled morphology and the highest photoluminescence intensity, which was 48% higher than that of the $Y_2O_3$:Eu commercial product.

  • PDF

Effect of Power Intensity on the Phenol and Chlorinated Compounds Mixture Solutions by Ultrasound (초음파로 페놀 분해 시 염소계화합물의 첨가와 음향 강도의 영향)

  • Lim, Myunghee;Son, Younggyu;Yang, Jaekeun;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.118-122
    • /
    • 2008
  • Degradations of phenol and chlorinated compounds mixtures were studied with ultrasound of 20 kHz and 0.57, 1.14 W/mL. In presence of carbon tetrachloride (CT), degradation rate of phenol is faster than chloroform (CF), dichloromethane (DCM) and phenol solution. It is due to that CT generates of free chlorine (HOCl and $OCl^-$) from the sonochemical degradation and plays a role of hydrogen atom scavenger. CF and DCM are react with free chlorine, so amount of free chlorine is smaller than CT solution. The degradation rates of chlorinated compounds decreased with co-presence of phenol in the solution due to the distribution ultrasonic energy to both compounds. The measured chloride ion was lower than the theoretical concentration assuming complete degradation. This means not all the contaminants destructed went through complete degradation.