• 제목/요약/키워드: Ultrafine fibers

검색결과 12건 처리시간 0.02초

Preparation and Characterization of PAN-based Superfined Carbon Fibers for Carbon-paper Applications

  • Kim, Subong;Chung, Yong Sik;Choi, Heung-Soap;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3733-3737
    • /
    • 2013
  • Polyacrylonitrile (PAN)-based ultrafine fibers and carbon fibers were produced by wet-spinning, and the crystal sizes and thermal and mechanical properties of the fibers were investigated. Scanning electron microscopy revealed that the superfine fibrils in the surfaces of the PAN/polyvinyl acetate (PVA) blend fibers increased slightly with increasing PAN content before removal of the PVA. Differential scanning calorimetry indicated that the PAN and PVA in the blend fibers do not mix and, therefore, each maintains their inherent thermal characteristics. The crystal sizes of the blend fibers prepared by removing PVA with water increased at 5 wt % water. The extent of the reaction of the PAN carbon fibers, as calculated from the FT-IR spectra, is maximized at the stepwise temperature of $230^{\circ}C$, and the density increased significantly above this temperature. The carbon fibers had relatively good mechanical properties, as shown by their tensile strength and modulus values of 2396 MPa and 213 GPa, respectively.

해도형 초극세 나일론 섬유의 알칼리 용출 및 염색성 (Alkaline Dissolution and Dyeing Properties of Sea-island Type Ultrafine Nylon Fiber)

  • 이혜정;이효영;박은지;최연지;김성동
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.325-331
    • /
    • 2010
  • The alkaline dissolution behavior of sea-island type ultrafine nylon fiber were dependent on the concentration of NaOH and treatment time, and the most appropriate condition for alkaline dissolution was to treat with 20g/l NaOH for 30 min at $80^{\circ}C$. The dyeing properties of sea-island type ultrafine nylon fiber and regular nylon fiber were examined with 3 different types of acid dyes in this study. The dye uptakes of ultrafine nylon fiber were higher than regular nylon fiber because of large surface area per unit mass, which increased as the dye bath pH decreased. The dyeing rates on ultrafine nylon fiber were faster and dye exhaustions were higher than regular nylon fiber, however color strength and rating of wash fastness were lower. It was also found that levelling type acid dye showed fast dyeing rate on both nylon fibers than metal-complex and milling type acid dyes.

전기방사에 의한 셀룰로오스 아세테이트 극세 섬유 웹의 제조 (Preparation of Ultrafine Fiber Web from Cellulose Acetate by Electrospinning)

  • 이인화;설명수;박주영;윤석진
    • 공업화학
    • /
    • 제17권3호
    • /
    • pp.255-259
    • /
    • 2006
  • 전기방사에 의해 셀룰로오스 아세테이트 약 800 nm 지름 극세 섬유를 농도, 전압, 방사거리 변화에 따라 제조하였다. 아세톤 용매를 이용해 7.5 wt%~15.0 wt% 셀룰로오스 고분자용액을 만든 후 다양한 조건에서 전기방사를 실시하였다. 농도별 셀룰로오스 고분자용액은 인가전압, 토출 유속, 그리고 팁과 집적판 사이의 거리의 변화와 함께 적용되었다. 섬유 직경은 전기방사 시 고분자용액의 점도에 의존하였다. 섬유의 직경은 점도에 의존하며, 12.0 cp 이하의 고분자용액에서는 형성되지 못하였다. 셀룰로오스 고분자용액의 농도가 12.5 wt%, 인가전압 12 kV, 토출 유속 $100{\mu}L/min$ 그리고 팁과 집적판의 거리 가 7.5 cm에서 단섬유의 직경이 800 nm의 극세 섬유를 제조할 수 있다.

Effect of surface etching and ultrafine fibers on sound absorption characteristics

  • Lee, Yun-Eung;Seon, Choe-Hwa;Su, Baek-Mun;Hwan, Ju-Chang
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.406-409
    • /
    • 1998
  • Sound absorbing materials are divided into several types according to the appearances and the characteristics. Basic mechanism of sound absorption in various sound absorbing materials is the conversion of sound energy into hat energy. Here the important elements which govern by the conversion from sound into heat depend on the type of materials. (omitted)

  • PDF

전기방사된 PVDF 섬유웹의 전기적 특성에 있어 입자의 영향 (Influence of Particles on the Electrical Properties of Electrospun PVDF Fiberwebs)

  • Lee, Young-Soo;Joo, Chang-Whan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.271-272
    • /
    • 2003
  • Electrospinning is a novel process for forming fibers with submicron scale diameters through the action of electrical force. In the previous study, we performed study on the ultrafine PVDF nanofiber production in the stable spinning condition. Recently it would be great interest to fabricate IP(inorganic particle) assemblies in nanofibe. since such IP/nanofiber hybrid materials might be used in a nonwoven form as nanowires, medical gauges for bums healing and cell growing, sensors, chemical and gas filteration. (omitted)

  • PDF

Polycarprolactone Ultrafine Fiber Membrane Fabricated Using a Charge-reduced Electrohydrodynamic Process

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Koh, Young-Ho
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.533-537
    • /
    • 2009
  • This paper introduces a modified electro spinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electro spun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination. In vivo tests on rats showed that these directly electro spun fibrous membranes produced using the modified electro spinning process supported the good healing of skin bums.

전기방사된 PET 부직포/PU 복합체의 제조 및 특성 (Characterization and Preparation of Electrospun Poly(ethylene terephthalate) (PET) Nonwoven/Polyurethane (PU) composites)

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Kim, Chul-Ki;Kim, Hak-Yong;Lee, Sung-Gu;Park, Soo-Jin
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.275-276
    • /
    • 2003
  • Electrostatic spinning or electrospinning has been recently paid attention to prepare ultrafine fiber mats which are composed of diameters in a range of submicrons to nanoscale size[l]. Due to small diameters and porous structure, electrosun fibers have a high specific surface area and expected to use for broad applications, such as filters, membranes, wound dressing materials, artificial blood vessels. a nonwoven fabric, a reiforcement of nanocomposites[2,3], etc. (omitted)

  • PDF

Fabrication and characterization of aligned crossply PHBV fibrous mat

  • Kim, Yang-Hee;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.44.1-44.1
    • /
    • 2010
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a bacterially derived copolymer produced by fermentation. PHBV has been attractive because of its potential environmental, pharmaceutical and biomedical applications. Recently, the electrospinning technique has been used to fabricate fibrous mat for biomedical applications such as artificial blood vessel, drug release and scaffolds, because this method is simple and easy to get ultrafine polymer fibers. Depending on speed of rotation drum collector, fiber structure was different. In this work, PHBV fiber was aligned by electrospinnning machine. Furthermore, alignment of PHBV fiber mats was given angle such as $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The morphology of each aligned PHBV fiber mat was observed by SEM technique. The mechanical property was evaluated depending on alignment angle. Especially, cell attachment ability depending on alignment of PHBV fiber mats was carried out using MG- 63 osteoblast like cells.

  • PDF

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.