• Title/Summary/Keyword: Ultrafine Grains

Search Result 32, Processing Time 0.028 seconds

Ultra Grain Refinement and High Strengthening of Deoxidized Low-Phosphorous Copper by Accumulative Roll-Bonding Process (ARB법에 의한 인탈산동의 결정립초미세화 및 고강도화)

  • Lee, Seong-Hee;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.592-597
    • /
    • 2006
  • A deoxidized low-phosphorous (DLP) copper was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two copper sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles (${\varepsilon}{\sim}6.3$). TEM observation revealed that ultrafine grains were developed after the 4th cycle, and their size decreased at higher cycles. Tensile strength of the copper increased with the equivalent strain, and it reached 547 MPa which was 3 times higher than that of the initial material. It is concluded that the ARB process is an effective method for high strengthening of the DLP copper.

Mechanical Properties of Ultrafine Grained 5052 Al Alloy produced by Cryogenic Rolling Process (극저온 압연으로 제조된 5052 Al Alloy의 기계적 성질)

  • Lee Y. B.;Nam W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.233-239
    • /
    • 2004
  • The effect of annealing temperature on microstructures and mechanical properties of the sheets received $88\%$ reduction at cryogenic temperature was investigated for the annealing temperature of $150\~300^{\circ}C$, in comparison with those at room temperature. The presence of equiaxed grains, whose size is about 200nm in a diameter, was observed in 5052 Al alloy deformed $88\%$ and annealed $200^{\circ}C$ for an hour. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed the higher strengths and equivalent elongation after annealing at the annealing temperature below $200^{\circ}C$. However, for annealing above $250^{\circ}C$ materials deformed at cryogenic temperature showed the lower strength than those deformed at room temperature. This behavior might be attributed to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

  • PDF

Change in Microstructure and Mechanical Properties of Deoxidized Low-Phosphorous Copper Processed by Accumulative Roll-Bonding with Annealing (ARB가공된 인탈산동의 어닐링에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Kim, Chun-Su;Kim, Sang-Shik;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • A deoxidized low-phosphorous copper processed by eight cycles of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $400^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $350^{\circ}C$, however above $400^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. The hardness of the copper decreased slightly with the annealing temperature up to $350^{\circ}C$, however they dropped largely above $400^{\circ}C$. Annealing characteristics of the copper were compared with those of an oxygen free copper processed by ARB and subsequently annealed.

Annealing Characteristics of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (ARB법에 의해 강소성가공된 무산소동의 어닐링 특성)

  • Lee Seong-Hee;Cho Jun;Lee Chung-Hyo;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.555-559
    • /
    • 2005
  • An oxygen free copper severely-deformed by eight cycles (an equivalent strain of $\~6.4$) of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $300^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $150^{\circ}C$, however above $200^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. Tensile strength and hardness of the copper decreased slightly with the annealing temperature up to $150^{\circ}C$, however they dropped largely above $200^{\circ}C$. Annealing characteristics of the copper were compared with those of a commercially pure aluminum processed by ARB and subsequently annealed.

Microstructural Evolution with Annealing of Ultralow Carbon IF Steel Severely Deformed by Six-Layer Stack ARB Process (6층겹침ARB공정에 의해 강소성가공된 극저탄소IF강의 어닐링에 따른 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.403-408
    • /
    • 2012
  • A sample of ultra low carbon IF steel was processed by six-layer stack accumulative roll-bonding (ARB) and annealed. The ARB was conducted at ambient temperature after deforming the as-received material to a thickness of 0.5 mm by 50% cold rolling. The ARB was performed for a six-layer stacked, i.e. a 3 mm thick sheet, up to 3 cycles (an equivalent strain of ~7.0). In each ARB cycle, the stacked sheets were, first, deformed to 1.5 mm thickness by 50% rolling and then reduced to 0.5 mm thickness, as the starting thickness, by multi-pass rolling without lubrication. The specimen after 3 cycles was then annealed for 0.5 h at various temperatures ranging from 673 to 973 K. The microstructural evolution with the annealing temperature for the 3-cycle ARB processed IF steel was investigated in detail by transmission electron microscopy observation. The ARB processed IF steel exhibited mainly a dislocation cell lamella structure with relatively high dislocation density in which the subgrains were partially observed. The selected area diffraction (SAD) patterns suggested that the misorientation between neighboring cells or subgrains was very small. The thickness of the grains increased in a gradual way up to 873 K, but above 898 K it increased drastically. As a result, the grains came to have an equiaxed morphology at 898 K, in which the width and the thickness of the grains were almost identical. The grain growth occurred actively at temperatures above 923 K.

Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process (ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.

Development of ultrafine grained silicon carbide by spark plasma sintering (스파크 플라즈마 소결에 의한 초미세 결정립 탄화규소의 개발)

  • 조경식;이광순;백성호;이상진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • Rapid densification of a SiC powder with additive 0.5 wt% $B_4$C was conducted by spark plasma sintering (SPS). The unique features of the process are the possibilities of using very fast heating rate and short holding time to obtain fully dense materials. The heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature and soaking time varied to 1800, 1850, 1900 and $1950^{\circ}C$ and 10, 20 and 30 min, respectively. All of the SPS-sintered specimens at $1950^{\circ}C$ reached near-theoretical density. The XRD found that 3C-to-6H transformation at $1850^{\circ}C$. The microstructures of the rapidly densified SiC ceramics consisted of duplex microstructure with ultrafine equiaxed grains under 2 $\mu\textrm{m}$ and elongated grains of 0.5∼2 $\mu\textrm{m}$ wide, length 3∼10 $\mu\textrm{m}$. The biaxial strength increased with the increase of sintering time. Strength of 392.7 MPa was obtained with the fully densified specimen sintered at $1950^{\circ}C$ for 30 min, in agreement with the general tendency that strength increases with decreases pore. On the other hand, the fracture toughness shows the value of 2.17∼2.34 MPa$.$$m^{1/2}$ which might be due to the transgranular fracture mode.

Microstructure and Mechanical Properties of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (반복겹침접합압연법에 의해 강소성가공된 무산소동의 미세조직 및 기계적 특성)

  • Lee Seong-Hee;Cho Jun;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.240-245
    • /
    • 2005
  • An oxygen free copper was severely deformed by accumulative roll-bonding (ARB) process for improvement of its mechanical properties. Two copper sheets 1 m thick, 30 mm wide and 300 m long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about $50\%$ reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles $(\varepsilon-6.4)$. TEM observation revealed that ultrafine grains were developed after the third cycle, and their size was slightly increased at higher cycles. Tensile strength of the copper increased with the strain at low strain levels, but it hardly increased from 3 cycles $(\varepsilon>2.4)$ due to occurrence of dynamic recovery, even if the imposed strain increased.

Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process (등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰)

  • Kim, W.;Lee, H.H.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

THE MAGNETOSTRICTIVE PROPERTIES OF Dy-Fe-B ALLOYS WITH NANOCRYSTALLINE GRAIN STRUCTURE

  • Lim, S.H.;Kim, S.R.;Noh, T.H.;Lee, S.R.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.795-799
    • /
    • 1995
  • The magnetostriction versus field (${\lambda}-H$) curves for the melt-spun ribbons of $Dy_{x}{(Fe_{1-y}B_{y})}_{1-x}$ (x=0.2, 0.25, 0.3; y=0, 0.05, 0.1, 0.15, 0.2) alloys are measured systematically at various wheel speeds ranging from 10 to 50 m/sec. The ${\lambda}-H$ curves in most cases vary sensitively with the wheel speed and, in the wheel speed range where no amorphous phase is formed, the magnetic softness improves rather continuously with the wheel speed. This result is considered to be due to the reduced grain size with increasing wheel speed, which was confirmed by X-ray diffraction and transmission electron microscopy. In particular, homogeneous and ultrafine grains with size of about 10 nm are formed even in the as-spun state when the $Dy_{0.3}{(Fe_{1-y}B_{y})}_{0.7}$ alloys are quenched at the wheel speed of 30 m/sec (for the alloy with y=0.2) or 40 m/sec (for the alloys with $y{\leq}0.15$) and the ribbons having the nanocrystalline grain structure exhibit good magnetostrictive characteristics.

  • PDF