• Title/Summary/Keyword: Ultrafast Laser

Search Result 58, Processing Time 0.024 seconds

Spectroscopic Applications of Ultrashort Pulse Lasers (극초단 펄스레이저의 분광학 응용)

  • 김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.87-97
    • /
    • 1990
  • With the recent advent of various ultrashort pulse lasers, time-resolved laser spectroscopic techniques have been widely recognized as versatile tools to study ultrafast phenomena in many research areas. These techniques are currently being employed not only to study atomic and molecular physics but to characterize the excited state or the carrier dynamics on surfaces of semiconductors, metals and thin layer materials. Also the sweetching speed measurement of ultrafast electro-optic devices using ultrashort laser pulses becomes important in high-speed electronics. Here, some principles of spectroscopic techniques with ps or fs lasers and their applications are summarized briefly.

  • PDF

Ultrafast probes of coherent oscillations in Fe-based superconductors

  • Kim, K.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an $A_{1g}$ phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.

Cavity-Length-Dependent Spectral and Temporal Characteristics of the Quantum Wire Laser (양자선 레이저의 공진기 길이 변화에 따른 시간적 및 공간적 특성)

  • Choi, Young-Chul;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1094-1097
    • /
    • 2003
  • In this paper, the cavity-length-dependent spectral and temporal characteristics of a V-groove AlGaAs-GaAs quantum wire (QWR) laser at each subband were investigated. At short cavity lasers less than $300{\mu}m$, a discrete wavelength switching from the n=1 to the n=2 subband occurred due to the increased threshold gain, resulting from the increased cavity loss. Using the characteristic of the wavelength shift from n=1 to the n=2 subband with shortening the cavity length, ultrafast lasing behaviors under gain switching at the n=1 and the n=2 subband transition were demonstrated and compared.

  • PDF

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

A Femtosecond Laser Metrology on the Thermal Conductivity of a Nanoscale Superconductor Material (펨토초 레이저를 이용한 나노 스케일 초전도 재료의 열전도율 평가)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.314-320
    • /
    • 2015
  • The present study investigates the thermal characteristics of a nanoscale superconductor material. A thin-film of $YBa_2Cu_3O_7-x$ was deposited on a $SrTiO_3$ substrate by using a pulsed-laser deposition technique and characterized using an ultrafast laser system. In order to extract a thermal conductivity value, a numerical solution for a transient one-dimensional heat conduction equation was obtained using a finite-difference method. The curve-fit shows a value 1.2 W/mK, which is relatively lower than those of bulk materials. This research provides a material property of superconductor thin-film required for the thermal design of micro or nanodevices.

Energy Relaxation Dynamics of Excited Triplet States of Directly Linked Zn(II)Porphyrin Arrays

  • Song, Nam-Woong;Cho, Hyun-Sun;Yoon, Min-Chul;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.271-276
    • /
    • 2002
  • The energy relaxation dynamics of the lowest excited singlet and triplet states of the Zn(II)porphyrin monomer and its directly linked arrays were comparatively investigated with increasing the number of porphyrin moieties. While the fluorescence decay rates and quantum yields of the porphyrin arrays increased with the increase of porphyrin units, their triplet-triplet (T-T) absorption spectra and decay times remained almost the same. The difference in the trends of energy relaxation dynamics between the excited singlet and triplet states has been discussed in view of the electronic orbital configurations.

Plasmon Assisted Deep-ultraviolet Pulse Generation from Amorphous Silicon Dioxide in Nano-aperture

  • Lee, Hyunsu;Ahn, Heesang;Kim, Kyujung;Kim, Seungchul
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.361-367
    • /
    • 2018
  • Ultrafast deep-ultraviolet (DUV) pulse generation from the subwavelength aperture of a plasmonic waveguide was investigated. The plasmonic nanofocusing of near-infrared (NIR) pulses was exploited to enhance DUV photoemission of surface third harmonic generation (STHG) at the amorphous $SiO_2$ dielectric. The generated DUV pulses which are successfully made from a nano-aperture using 10 fs NIR pulses have a spectral bandwidth of 13 nm at a carrier wavelength of 266 nm. This method is applicable for tip-based ultrafast UV laser spectroscopy of nanostructures or biomolecules