• Title/Summary/Keyword: Ultradian

Search Result 11, Processing Time 0.02 seconds

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes

  • Kim, Doyeon;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.600-606
    • /
    • 2020
  • Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Sleep-Wake Cycles in Man (인간의 수면-각성 주기)

  • Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.2
    • /
    • pp.147-155
    • /
    • 1997
  • To assess the reliability of chronobiological models of sleep/wake regulation, it is necerssary that the models predict the data which has been studied in sleep research, and they should be generalized across all ages. To date, many adult human data on such models have accumulated, yet it is evident that a comprehensive theory of the biorhythmic aspects of sleep/wake states has not established. Circadian rhythms such as the time going to bed, sleep onset, slow wave sleep pressure, periodicity of REM sleep, daytime performance, and early evening alertness are resumed everyday. Even in adult humans, sleep is inherently polyphasic. In both the disentrained and entrained states, naps when allowed tend to recur in a temporally lawful manner. The monophasic sleep pattern of most industrial societies therefore appears to be purely of social origin. The endogenous biorhythmic nature of circasemidian sleep tendency is supported by the ubiquity of the phenomenon across all ages. The NREM/REM sleep cycle within sleep with its inherent physiological, endocrine, and neurochemical fluctuations represents the best-documented ultradian sleep rhythms. Also, a daytime ultradian variation in sleepiness with a periodicity similar to nocturnal NREM/REM cycle(BRAC hypothesis) is suggested. This review article provides a brief synoptic review of the evidences for circadian, circasemidian, and ultradian sleep/wake rhythms, and then the authour will suggest the issues which expedite fuller modeling of sleep/wake system, to be further discussed.

  • PDF

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Kageyama, Ryoichiro;Niwa, Yasutaka;Shimojo, Hiromi
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.497-502
    • /
    • 2009
  • In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Sleep Characteristics in Infants (영아의 수면 특성)

  • Rhie, Seonkyeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.27 no.2
    • /
    • pp.33-40
    • /
    • 2020
  • An infant's sleep varies considerably from that of adults in terms of structure, amount, and breathing pattern. After birth, sleep becomes evenly distributed throughout the day and night. Nighttime sleep gradually increases with the maturation of circadian rhythm, and sleep is gradually consolidated. Electroencephalography characteristics change with age, from early and dominant active (REM) sleep in newborns to increasing NREM sleep. Similar to other elements of growth, the upper respiratory tract and ribcage gradually increase in size with age, and respiratory control also improves. With these changes, sleep patterns also change. At this time that various sleep disorders may appear. Improved understanding of age-dependent changes in infant sleep can help determine the etiology and facilitate diagnosis of infant sleep diseases.