Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0066

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes  

Kim, Doyeon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Choe, Han Kyoung (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kim, Kyungjin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Abstract
Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.
Keywords
calcium oscillation; development; kisspeptin; reproduction; ultradian rhythm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Belchetz, P., Plant, T., Nakai, Y., Keogh, E., and Knobil, E. (1978). Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631-633.   DOI
2 Blum, I.D., Zhu, L., Moquin, L., Kokoeva, M.V., Gratton, A., Giros, B., and Storch, K.F. (2014). A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife 3, e05105.   DOI
3 Pinilla, L., Aguilar, E., Dieguez, C., Millar, R.P., and Tena-Sempere, M. (2012). Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235-1316.   DOI
4 Ribeiro, A.B., Leite, C.M., Kalil, B., Franci, C.R., Anselmo-Franci, J.A., and Szawka, R.E. (2015). Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J. Neuroendocrinol. 27, 88-99.   DOI
5 Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S., Jr, Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., et al. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614-1627.   DOI
6 Smedler, E. and Uhlen, P. (2014). Frequency decoding of calcium oscillations. Biochim. Biophys. Acta 1840, 964-969.   DOI
7 Son, G.H., Chung, S., Choe, H.K., Kim, H.D., Baik, S.M., Lee, H., Lee, H.W., Choi, S., Sun, W., Kim, H., et al. (2008). Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. U. S. A. 105, 20970-20975.   DOI
8 Bourguignon, C. and Storch, K.F. (2017). Control of rest:activity by a dopaminergic ultradian oscillator and the circadian clock. Front. Neurol. 8, 614.   DOI
9 Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A., Tenen, D., Goldman, M., Verstegen, A.M., Resch, J.M., McCarroll, S.A., et al. (2017). A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484-496.   DOI
10 Choe, H.K., Kim, H.D., Park, S.H., Lee, H.W., Park, J.Y., Seong, J.Y., Lightman, S.L., Son, G.H., and Kim, K. (2013). Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proc. Natl. Acad. Sci. U. S. A. 110, 5677-5682.   DOI
11 Sonnen, K.F., Lauschke, V.M., Uraji, J., Falk, H.J., Petersen, Y., Funk, M.C., Beaupeux, M., François, P., Merten, C.A., and Aulehla, A. (2018). Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079-1090.e12.   DOI
12 Szawka, R.E., Ribeiro, A.B., Leite, C.M., Helena, C.V., Franci, C.R., Anderson, G.M., Hoffman, G.E., and Anselmo-Franci, J.A. (2010). Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 151, 3247-3257.   DOI
13 Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164-179.   DOI
14 Dibner, C., Schibler, U., and Albrecht, U. (2010). The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549.   DOI
15 Clarkson, J., Han, S.Y., Piet, R., McLennan, T., Kane, G.M., Ng, J., Porteous, R.W., Kim, J.S., Colledge, W.H., Iremonger, K.J., et al. (2017). Definition of the hypothalamic GnRH pulse generator in mice. Proc. Natl. Acad. Sci. U. S. A. 114, E10216-E10223.   DOI
16 Clarkson, J. and Herbison, A.E. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817-5825.   DOI
17 Cortassa, S.D.C., Aon, M.A., Aon, J.C., Iglesias, A.A., and Lloyd, D. (2011). An Introduction to Metabolic and Cellular Engineering (2nd Edition) (Singapore: World Scientific Publishing Company).
18 Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464.   DOI
19 van der Veen, D.R. and Gerkema, M.P. (2017). Unmasking ultradian rhythms in gene expression. FASEB J. 31, 743-750.   DOI
20 Takashima, Y., Ohtsuka, T., Gonzalez, A., Miyachi, H., and Kageyama, R. (2011). Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl. Acad. Sci. U. S. A. 108, 3300-3305.   DOI
21 Voliotis, M., Li, X.F., De Burgh, R., Lass, G., Lightman, S.L., O'Byrne, K.T., and Tsaneva-Atanasova, K. (2019). The origin of GnRH pulse generation: an integrative mathematical-experimental approach. J. Neurosci. 39, 9738-9747.   DOI
22 Wolpert, L., Tickle, C., and Arias, A.M. (2015). Principles of Development (Oxford: Oxford University Press).
23 Wu, Y.E., Enoki, R., Oda, Y., Huang, Z.L., Honma, K.I., and Honma, S. (2018). Ultradian calcium rhythms in the paraventricular nucleus and subparaventricular zone in the hypothalamus. Proc. Natl. Acad. Sci. U. S. A. 115, E9469-E9478.   DOI
24 Hastings, M.H., Maywood, E.S., and Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453-469.   DOI
25 Fu, L.Y. and van den Pol, A.N. (2010). Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J. Neurosci. 30, 10205-10219.   DOI
26 Gachon, F., Nagoshi, E., Brown, S.A., Ripperger, J., and Schibler, U. (2004). The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103-112.   DOI
27 Gill, J.C., Navarro, V.M., Kwong, C., Noel, S.D., Martin, C., Xu, S., Clifton, D.K., Carroll, R.S., Steiner, R.A., and Kaiser, U.B. (2012). Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 153, 4883-4893.   DOI
28 Yates, F.E. and Yates L.B. (2008). Ultradian rhythms as the dynamic signature of life. In Ultradian Rhythms from Molecules to Mind, D. Lloyd and E. Rossi, eds. (Dordrecht, Netherlands: Springer Science+Business Media B.V.), pp. 249-260.
29 Yildiz, B., Suchard, M., Wong, M., McCann, S., and Licinio, J. (2004). Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. U. S. A. 101, 10434-10439.   DOI
30 Goldbeter, A. (2008). Biological rhythms: clocks for all times. Curr. Biol. 18, R751-R753.   DOI
31 Herbison, A.E. (2016). Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452-466.   DOI
32 Herbison, A.E. (2018). The gonadotropin-releasing hormone pulse generator. Endocrinology 159, 3723-3736.   DOI
33 Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., and Kageyama, R. (2004). Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750-754.   DOI
34 Israel, J.M., Le Masson, G., Theodosis, D.T., and Poulain, D.A. (2003). Glutamatergic input governs periodicity and synchronization of bursting activity in oxytocin neurons in hypothalamic organotypic cultures. Eur. J. Neurosci. 17, 2619-2629.   DOI
35 Hubaud, A. and Pourquie, O. (2014). Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709-721.   DOI
36 Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., and Kageyama, R. (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203-1208.   DOI
37 Isomura, A. and Kageyama, R. (2014). Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development 141, 3627-3636.   DOI
38 Kageyama, R., Niwa, Y., and Shimojo, H. (2009). Rhythmic gene expression in somite formation and neural development. Mol. Cells 27, 497-502.   DOI
39 Kim, D., Jang, S., Kim, J., Park, I., Ku, K., Choi, M., Lee, S., Heo, W.D., Son, G.H., Choe, H.K., et al. (2020). Kisspeptin neuron-specific and self-sustained calcium oscillation in the hypothalamic arcuate nucleus of neonatal mice: regulatory factors of its synchronization. Neuroendocrinology 2020 Jan 15 [Epub]. https://doi.org/10.1159/000505922
40 Kalafatakis, K., Russell, G.M., Harmer, C.J., Munafo, M.R., Marchant, N., Wilson, A., Brooks, J.C., Durant, C., Thakrar, J., Murphy, P., et al. (2018). Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc. Natl. Acad. Sci. U. S. A. 115, E4091-E4100.   DOI
41 Kumar, D., Periasamy, V., Freese, M., Voigt, A., and Boehm, U. (2015). In utero development of kisspeptin/GnRH neural circuitry in male mice. Endocrinology 156, 3084-3090.   DOI
42 Lloyd, D., Aon, M.A., and Cortassa, S. (2001). Why homeodynamics, not homeostasis? ScientificWorldJournal 1, 133-145.   DOI
43 Lamont, E.W. and Amir, S. (2010). Circadian and ultradian clocks/rhythms. In Encyclopedia of Behavioral Neuroscience, G.F. Koob, M.L. Moal, and R.F. Thompson, eds. (Oxford: Academic Press), pp. 257-261.
44 Lee, J., Chun, S.K., Son, G.H., and Kim, K. (2015). Sumoylation of Hes6 regulates protein degradation and Hes1-mediated transcription. Endocrinol. Metab. (Seoul) 30, 381-388.   DOI
45 Lightman, S.L. and Conway-Campbell, B.L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat. Rev. Neurosci. 11, 710-718.   DOI
46 Lopp, S., Navidi, W., Achermann, P., LeBourgeois, M., and Diniz Behn, C. (2017). Developmental changes in ultradian sleep cycles across early childhood. J. Biol. Rhythms 32, 64-74.   DOI
47 Navarro, V.M., Ruiz-Pino, F., Sanchez-Garrido, M.A., Garcia-Galiano, D., Hobbs, S.J., Manfredi-Lozano, M., Leon, S., Sangiao-Alvarellos, S., Castellano, J.M., Clifton, D.K., et al. (2012). Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J. Neurosci. 32, 2388-2397.   DOI
48 McCartney, C.R. and Marshall, J.C. (2014). Neuroendocrinology of reproduction. In Yen & Jaffe's Reproductive Endocrinology, 7th ed., J.F. Strauss and R.L. Barbieri, eds. (Philadelphia, Elsevier Saunders), pp. 3-26.
49 McGinnis, G.R. and Young, M.E. (2016). Circadian regulation of metabolic homeostasis: causes and consequences. Nat. Sci. Sleep 8, 163-180.
50 Muller, T.D., Nogueiras, R., Andermann, M.L., Andrews, Z.B., Anker, S.D., Argente, J., Batterham, R.L., Benoit, S.C., Bowers, C.Y., Broglio, F., et al. (2015). Ghrelin. Mol. Metab. 4, 437-460.   DOI