• Title/Summary/Keyword: Ultra-wideband systems

Search Result 170, Processing Time 0.035 seconds

Adaptive Multiple Antenna Transmission Scheme in DS-UWB System (직접 확산 초 광대역 통신에서의 적응 다중 안테나 전송 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1208-1213
    • /
    • 2005
  • Recently, ultra wideband(UWB) is emerging as a solution for the IEEE 802.15.3a(TG3a) standard because of its potential to enable high-speed data transmission with low power consumption. One of the submitted systems as s PHY proposal is M-ary biorthogonal keying direct sequence ultra wideband(M-BOK DS-UWB). In this paper, adaptive multiple antenna transmission scheme for achieving high capacity and reliability in M-BOK DS-UWB is proposed. This proposed system can overcome the limitations of STBC and V-BLAST, such as bit error rate performance and throughput.

Improving the SFD Detection Performance of IEEE802.15.4a IR-UWB System (IEEE 802.15.4a IR-UWB 시스템의 SFD 검출 성능 개선 방안)

  • Lee, Ji-Yeon;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.358-363
    • /
    • 2010
  • In IEEE 802.15.4a IR-UWB (Impulse Radio Ultra Wideband) systems, it is crucial to acquire initial carrier/timing synchronization and estimate channel response by exploiting the SYNC symbols embedded in each packet. On the other hand, it is also crucial to detect the SFD pattern followed by the header and data symbols to reliably extract the information contained in the packet. In this paper, we propose a reliable SFD detection scheme utilizing some surplus SYNC symbols in addition to SFD symbols to improve the SFD detection performance.

Compact and Flexible Monopole Antenna for Ultra-Wideband Applications Deploying Fractal Geometry

  • Geetha, G;Palaniswamy, Sandeep Kumar;Alsath, M. Gulam Nabi;Kanagasabai, Malathi;Rao, T. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.400-405
    • /
    • 2018
  • This paper presents a compact ultra-wideband (UWB) flexible monopole antenna design on a paper substrate. The proposed antenna is made of iterations of a circular slot inside an octagonal metallic patch. This fractal-based geometry has been deployed to achieve compactness along with improved bandwidth, measured reflection coefficient -10 dB bandwidth ranging from 2.7 to 15.8 GHz. The overall size of the antenna is $26mm{\times}19mm{\times}0.5mm$, which makes it a compact one. The substrate used is paper and the main features like environment friendly, flexibility, green electronics applications and low cost of fabrication are the key factors for the proposed antenna. The aforementioned UWB prototype is suitable for many wireless communication systems such as WiMAX, WiFi, RFID and WSN applications. Antenna has been tested for the effect of bending by placing it over a curved surface of a very small radius of 10 mm.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

A Study of Ultra Wideband Impulse Radio Systems for Multiple Access Communication (다원접속 통신을 위한 초광대역 임펄스 무선 전송 시스템 연구)

  • 이양선;강희조;문용규;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.224-231
    • /
    • 2003
  • In this paper we proposed system parameter values of ultra-wideband Impulse Radio systems for the frequency band(3.1~10.6GHz), which is allocated by Federal Communications Commission(FCC). We also analyzed performance of the proposed system in the multiple access interference environment. According to result, application of possible pulse duration($t_{n}$) is very limited by 0.04~0.0326 ns in permission frequency range that establish in FCC. In the case of the same pulse signal power, we could know that system performance was changed by pulse repetition number($N_{s}$ ) regardless of pulse duration. Thus, We could know that we have to need duration of monocycle pulse and setting of frame un it time(Τ$_{f}$ ) according to multi user numbers and design proper pulse repetition number by transfer rate in multiple access systems design. In the IR system that needs high speed transmission more than 50 Mbps in multiple access interference environment, we could know that very serious performance decrease by multiple access interference happens. Therefore, as the design of high speed multiple access IR system, it should be designed to additional improvement techniques that can remove multiple access interference at the same time.

Low-power memory based FFT structure for high speed UWB (UWB용 저전력 Memory based FFT 구조)

  • Choi, Dong-Kyu;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.215-216
    • /
    • 2008
  • Ultra wideband (UWB) system is one of the promising solutions for future short-range communication which has recently received a great attention by many researchers. In this paper, we proposed 128-point low power FFT structure based on the memory for UWB systems. The proposed structure can improve implementation area and power consumption efficiency as it consists of one of the butterfly PE and a little memory.

  • PDF

The Research of the UWB Interference Effects on the Mobile Communication System

  • Song, Hong-Jong;Cha, Jae-Sang;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1085-1090
    • /
    • 2010
  • Ultra wideband (UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geolocation, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional mobile wireless systems sharing the frequency bands such as Cellular CDMA and Korean PCS. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a direct-sequence spread-spectrum UWB source and an impulse radio UWB source, to a Cellular CDMA and K-PCS digital transmission system. The average frame error rate degradation of each system arc presented. From these experimental results, we show that in all practical cases UWB system can coexist with Cellular CDMA and K-PCS terminal without causing any dangerous interference.

Low Power Parallel Acquisition Scheme for UWB Systems (저전력 병렬탐색기법을 이용한 UWB시스템의 동기 획득)

  • Kim, Sang-In;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.147-154
    • /
    • 2007
  • In this paper, we propose a new parallel search algorithm to acquire synchronization for UWB(Ultra Wideband) systems that reduces computation of the correlation. The conventional synchronization acquisition algorithms check all the possible signal phases simultaneously using multiple correlators. However it reduces the acquisition time, it makes high power consumption owing to increasing of correlation. The proposed algorithm divides the preamble signal to input the correlator into an m-bit bunch. We check the result of the correlation at first stage of an m-bit bunch data and predict whether it has some synchronization acquisition information or not. Thus, it eliminates the unnecessary operation and save the number of correlation. We evaluate the proposed algorithm under the AWGN and the multi-Path channel model with MATLAB. The proposed parallel search scheme reduces number of the correlation 65% on the AWGN and 20% on the multi-path fading channel.

MB-OFDM UWB Technology for Increasing Transmission Reach of Wireless Speaker Systems (차세대 무선 스피커 시스템의 전송거리 증대를 위한 MB-OFDM UWB 기술)

  • Kim, Do-Hoon;Wee, Jung-Wook;Lee, Hyeon-Seok;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.1-5
    • /
    • 2011
  • We present the Multi-band orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) technology for increasing the transmission reach of wireless speaker systems. The proposed scheme adopts the Reed-Solomon coding for preventing the random error perfectly and shows the SNR gain in low bit error rate (BER) especially. So, we can increase the maximum reach of MB-OFDM UWB technology since the receiver sensitivity is improved. The simulation environment includes most effects of realistic channel environments such as Additive White Gaussian Noise (AWGN), CM1 channel model, Sampling frequency offset (SFO), Carrier frequency offset (CFO) to improve the simulation accuracy. The simulation results show that the proposed scheme can give a maximum 2 dB SNR gain and increase the transmission reach up to 12.6m.