• Title/Summary/Keyword: Ultra-super critical

Search Result 32, Processing Time 0.033 seconds

Unit Response Optimizer mode Design of Ultra Super Critical Coal-Fired Power Plant based on Fuzzy logic & Model Predictive Controller (퍼지 로직 및 모델 예측 제어기 적용을 통한 초초임계압 화력발전소 부하 응답 최적화 운전 방법 설계)

  • Oh, Ki-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2285-2290
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant component. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control process of power plant in ultra super critical point because that point has highly nonlinear characteristics. In this paper, new control logic, Unit Response Optimizer Controller(URO Controller) which is based on Fuzzy logic and Model Predictive Controller, is introduced for better performance. Then its performance is tested and analyzed with design guideline.

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(Ultra Super Critical) Steam Turbine (550MW급 초초임계압(USC, Ultra Super Critical) 증기터빈의 Spike Vibration 에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.442-447
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed(3,600rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the Lower Half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

  • PDF

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(ultra super critical) Steam Turbine (550MW급 초초임계압(USC, ultra super critical) 증기터빈의 Spike Vibration에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak;Park, Jong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1238-1245
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450 rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed (3,600 rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the lower half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants (초초임계압 발전용 소재의 표면처리층의 고온 안정성 평가)

  • Ryu, K.H.;Song, T.K.;Lee, J.H.;Kim, G.S.;Lee, S.H.;Urm, K.W.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.

증기조건 향상에 따른 증기터빈 기술동향

  • Na, Un-Hak
    • 열병합발전
    • /
    • s.36
    • /
    • pp.16-21
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advance steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advance in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF

Steam Turbine Technology for Advanced Steam Condition (증기조건 향상에 따른 증기터빈 기술 동향)

  • Nah, U.H.;Cho, S.I.;Shin, H.;Kim, Y.S.;Yang, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2174-2179
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advanced steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advances in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF

Simulator Development of 1000MW Class Ultra Super Critical Coal-Fired Power Plant with Advanced Process Control Algorithm (고급공정제어 알고리즘을 이용한 1000MW급 차세대화력발전소 시뮬레이터 개발)

  • Oh, Ki-Yong;Lim, Geon-Pyo;Kim, Ho-Yol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1817-1818
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant components. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control in that pressure within safety guideline that many unexpected phenomena are happen because that region is highly nonlinear region. In this paper, Advanced process control algorithm, ARX and Fuzzifier, is introduced. Then power plant control logics applied Unit Step Optimizer, which is combination of ARX and Fuzzifier are proposed. Its performance is tested and analyzed with design guide line.

  • PDF

Development trend of material and manufacturing process for fossil power generation (화력발전 소재 및 제조기술 개발)

  • Lee, Kyongwoon;Kong, Byeongook;Kim, Minsoo;Kang, Chung Yun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.141-148
    • /
    • 2016
  • This paper presents an overview of worldwide electric power development and National $700^{\circ}C$ Hyper Supercritical coal-fired power generation(HSC) focus on materials and manufacturing process. To Increase the efficiency of electric power generation, It is necessary to increase steam temperature and pressure. In that case, New material and manufacturing process shall be developed for boiler and turbine component in high temperature and pressure operating condition. Therefore, Much Efforts in worldwide are progressing to develop materials and manufacturing technology and to build and operate an HSC.

A Study on the Oxidation Behaviors of Power Plant Valve Materials under the Ultra Super Critical Condition (초초 임계 화력 발전소용 밸브 소재의 산화 거동)

  • Lee, J.S.;Cho, T.Y.;Yoon, J.H.;Joo, Y.G.;Song, K.O.;Cho, J.Y.;Kang, J.H.;Lee, S.H.;Uhm, K.W.;Lee, J.W.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • Recently ultra-supercritical steam power plants operate at $1000^{\circ}F$ ($538^{\circ}C$) and 3500 psi (24.1 MPa). Thermal efficiency of power plant will be increased about 2% if steam temperature increases from $1000^{\circ}F$ to $1150^{\circ}F$ ($621^{\circ}C$). In this study valve materials Incoloy901 (IC901) and Inconel718 (IN718) were nitrided to improve the surface hardness and solid lubrication function of the valve materials. The hardness of both IC901 and IN718 increased about two times by ion nitriding. IC901, IN718 and their nitrided specimens were corroded under ultra super-critical condition (USC) of $621^{\circ}C$. and 3600 psi (24.8 MPa) for 2000 hours. Oxidations of both IC901 and IN718 were very small due to the formation of protective oxide layer on the surface. But the corrosion resistance of both nitrided specimens decreased because of the formation of non-protective nitride layer of $Fe_{4}N$, $Fe_{2}N$ and CrN on the surface layer. The hardness of both nitrided IC901 and IN718 at $20{\mu}m$ depth from the surface decreased about 30% and 20% respectively by USC 2000 hours.