Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.5.329

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants  

Ryu, K.H. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ)
Song, T.K. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ)
Lee, J.H. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ)
Kim, G.S. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ)
Lee, S.H. (Doosan Heavy Industries & Construction Co.)
Urm, K.W. (Doosan Heavy Industries & Construction Co.)
Publication Information
Korean Journal of Materials Research / v.16, no.5, 2006 , pp. 329-335 More about this Journal
Abstract
In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.
Keywords
Ultra-Super Critical Power Plant; Incoloy 901; Turbine; 12-17%Cr-steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Berghaus, U. S. Patent, 3181029 (1965)
2 A. S. Korhonen and E. H. Sirvio, Thin Solid Films, 96, 103 (1982)   DOI   ScienceOn
3 Y. S. Kim and J. R. Park, Journal of Korean Welding Society, 17, 6 (1999)
4 B. Edenhofer, Heat Treatment of Metals, 1, 59 (1974)
5 H. E. Evans, Mechanism of Creep Fracture (Elsevier Applied Science, 1984)
6 D. S. Gells, J. Nucl. Mater., 122, 207 (1984)   DOI   ScienceOn
7 Y. Shibuya, K. Isobe and M. Yanagihara, J. Jpn. Heat Treatment, 5, 261 (1991)
8 J. J. Egan, U. S. Patent, 1837256 (1931)
9 K. Rodak, A. Hernas and A. Kielbus, Materials Chemistry and Physics, 9814, 1 (2003)
10 D. J. Cooch, Met. Sci., 16, 79 (1982)   DOI   ScienceOn
11 V. Sklencka, K. Kuchacova, M. Svoboda, L. Kloc, J. Burcik and A. Kroupa, Materials Characterization, 51, 35 (2003)   DOI   ScienceOn
12 Ministry of Commerce, Industry and Energy, Research on developing heat-resisting alloys for fossil fuel power plants, (2001)
13 K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.-J. Moon, S. Ozaki, N. Nishimura and Y. Tomokiyo, Materials Science and Engineering A, 374, 82 (2004)   DOI   ScienceOn
14 U. E. Klotz, C. Solenthaler, P. Ernst, P. J. Uggowitzer and M. O. Speidel, Materials Science and Engineering A, 272, 292 (1999)   DOI   ScienceOn
15 J. Hald, Steel Res., 9, 369 (1996)
16 F. Abe, T. Horiuchi, M. Taneike and K. Sawada, Materials Science and Engineering A, 378, 299 (2004)   DOI   ScienceOn
17 Y. Hosoi, N. Wade, S. Kunimitsu and T. Urita, J. Nucl. Mater., 461, 141 (1986)
18 K. Miyahara, J. H. Hwang and Y. Shimoide, Scr. Metall. Mater., 32, 1917 (1995)   DOI   ScienceOn