• Title/Summary/Keyword: Ultra-precision Polishing

Search Result 72, Processing Time 0.024 seconds

An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing (Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Lim, Dong-Wook;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.

A study on Corrective Polishing (형상수정 폴리싱에 관한 연구)

  • 김의중;신근하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.950-955
    • /
    • 2001
  • For the development of an ultra-precision CNC polishing system including on-machine measurement system, we study a corrective polishing algorithm. We analyze and test the unit removal profiles for a ball type polishing tool. Using these results we calculate dwell time distributions and residual errors for a target removal shape. We use the polishing simulation method and feed rate calculation method for the dwell time calculation. We test corrective polishing algorithm with an optical glass. The target removal shape is a sine wave that has amplitude 0.3 micro meters. We find this polishing process has a machining resolution of nanometer order and is effective for sub-micrometer order machining. This result will be used for the software development of the CNC polishing system.

  • PDF

Basic Studies on Corrective Polishing (형상수정 폴리싱에 관한 기초연구)

  • 김의종;김경일;김호상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.783-786
    • /
    • 2000
  • For the development of a ultra-precision CMC polishing system including on-machine measurement system, we study a corrective polishing algorithm. We calculated unit removal profiles for various polishing tools and polishing tool positions. Using these results we simulate the corrective polishing process based on dwell time control. We calculate dwell time distributions and residual error of the polishing simulation method and the FFT calculation method. We got good dwell time distributions and small residual when we used the FFT calculation method. This results will be used for the optimization of corrective polishing process.

  • PDF

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

A Study on the Characteristics of Ultra-Precision Grinding far Sapphires (사파이어의 초정밀 연삭 특성 연구)

  • 김우순;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.422-427
    • /
    • 2003
  • Sapphire have been ground by the ultra-precision surface grinder having a glass -ceramic spindle of extremely-low thermal expansion with various cup-type resinoid-bonded diamond wheels of #400-#3000 in grain size. Sapphire can be ground in the ductile mode. And also, the surface roughness and grinding conditions has been clarified. The smooth surface of Sapphire less than 1nm RMS, 1nm Ra can be obtained by the ultra-precision grinding without any polishing Process.

  • PDF

A Study on Basic Research Trends of Ultra-Precision Machining Technology in Korea (우리나라 초정밀가공기술의 기초연구동향 분석 연구)

  • Park, Won-Kyoo;Lee, Dae-Myung;Hong, Won-Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.86-95
    • /
    • 2011
  • Ultra-precision machining technology is the essential core technology in today's micro-electronics and electro-optical industries. The needs for processing systems to manufacture products to nanometer(nm) accuracy and sub-nanometer resolutions are increased recently. By using ion beam, it is possible to fabricate ultra-precision and ultra-fine products with nm accuracy and sub-nm resolution. In this paper, the basic research trends of ultra precision machining technology in domestic are surveyed, and the ways to reach to the world-leading level of basic research capabilities in the field of ultra-precision machining technology in domestic is suggested.

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Characteristics of MR Polishing using Carbonyl Iron Particles Coated with Xanthan Gum (Xanthan Gum으로 코팅된 Carbonyl Iron Particle를 이용한 자기유변유체 연마특성에 관한 연구)

  • Lee, J.W.;Ha, S.J.;Shin, B.C.;Kim, D.W.;Cho, M.W.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • A polishing method using magnetorheological (MR) fluid has been developed as a new precision technique to obtain a fine surface. The process uses a MR fluid that consists of magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water and stabilizers. But the CI particles in MR fluids cause a severe corrosion problem. When coated with Xanthan gum, the CI particles showed long-term stability in corrosive aqueous environment. The surface roughness obtained from the MR polishing process was evaluated. A series of experiments were performed on fused silica glass using prepared slurries and various process conditions, including different polishing times. Outstanding surface roughness of Ra=2.27nm was obtained on the fused silica glass. The present polishing method could be used to produce ultra-precision micro parts.