• Title/Summary/Keyword: Ultra short pulses

Search Result 44, Processing Time 0.043 seconds

Micro-groove Fabrication by Wire Electrochemical Machining with Ultra Short Pulses (와이어 펄스 전해 가공을 이용한 미세 홈 제작)

  • Na Chan Wook;Park Byung Jin;Kim Bo Hyun;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.37-44
    • /
    • 2005
  • In this paper, wire electrochemical machining (Wire ECM) with ultra short pulses is presented. Platinum wire with $10{\mu}m$ diameter was used as a tool and 304 stainless steel was locally dissolved by electrochemical machining in 0.1M $H_{2}SO_4$ electrolyte. Wire ECM can be easily applied to the fabrication of arbitrarily shaped micro-grooves without tool wear. The change of machining gap according to applied pulse voltage, pulse on-time and pulse period was investigated and the optimal pulse condition for stable machining was obtained. Using this method, various micro-grooves with less than $20{\mu}m$ width were fabricated.

Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG

  • Tsermaa, Baatarchuluun;Yang, Byung-Kwan;Kim, Myung-Whun;Kim, Jin-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.158-165
    • /
    • 2009
  • We present cross-correlation frequency-resolved optical gating (XFROG) measurements of supercontinuum pulses generated by using a photonic crystal fiber (PCF), and ultraviolet (UV) pulses generated by frequency doubling of infrared ultra-short pulses. Since supercontinuum pulses have broad spectra, XFROG measurement typically requires using an extremely thin nonlinear crystal which has a thickness of sub-ten microns. Instead of using such a thin crystal, we employed a relatively thick crystal which was mounted on a galvanometer in order to achieve a phase-matching over the whole spectral bandwidth of the supercontinuum pulses by a crystal-dithering technique. Experimental results of the retrieved phase and intensity were in fair agreement with the independently measured data.

Machining of Micro Grooves using Hybrid Electrochemical Processes with Voltage Pulses (펄스 전기화학 복합가공기술을 적용한 미세 그루브 가공)

  • 이은상;박정우;문영훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.32-39
    • /
    • 2003
  • Pulse electrochemical machining process with high or low current density may produce a non-lustrous surface on workpiece surface. The usual polishing process to remove a black layer from the surface has been hand polish the part. But the milli-to-micro meter scale structure formed by the electrochemical machining process may be destroyed while polishing process. The application of ultra short voltage pulses based on the analysis of electrical double layer charging process allows high resolution electrochemical machining and polishing. This technique was based on the specific polarization resistance from the comparison of ideal and experimental potential variation during short voltage pulses.

Designing Optimal Pulse-Shapers for Ultra-Wideband Radios

  • Luo, Xiliang;Yang , Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.344-353
    • /
    • 2003
  • Ultra-wideband (UWB) technology is gaining increasing interest for its potential application to short-range indoor wireless communications. Utilizing ultra-short pulses, UWB baseband transmissions enable rich multipath diversity, and can be demodulated with low complexity receivers. Compliance with the FCC spectral mask, and interference avoidance to, and from, co-existing narrow-band services, calls for judicious design of UWB pulse shapers. This paper introduces pulse shaper designs for UWB radios, which optimally utilize the bandwidth and power allowed by the FCC spectral mask. The resulting baseband UWB systems can be either single-band, or, multi-band. More important, the novel pulse shapers can support dynamic avoidance of narrow-band interference, as well as efficient implementation of fast frequency hopping, without invoking analog carriers.

Taper Reduction in Micro Electrochemical Milling Using Disk-type Electrode (디스크 전극을 이용한 미세 전해 밀링 가공에서의 테이퍼 형상 방지)

  • Kim Bo Hyun;Lee Young Soo;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.167-172
    • /
    • 2005
  • In this paper. micro electrochemical machining (ECM) for micro structure fabrications is presented. By applying ultra short pulses. the chemical reaction can be restricted only to the region very close to the electrode. Micro ECM is applied to machining micro structures through electrochemical milling process becasuse it doesn't suffer from tool wear. Using this method. 3D micro structures were machined on stainless steel. It was found that micro machining is possible with good surface quality in the low concentration electrolyte,0.1 M H₂SO₄. In ECM, as the machining depth increases, better flushing of electrolyte is required for sufficient ion supply. Layer-by-layer milling is advantageous in flushing. However, layer-by-layer milling causes taper of structures. To reduce the taper, application of a disk-type electrode was introduced. By electrochemical milling, various 3D micro structures including a hemisphere with 60 ㎛ diameter were fabricated.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser (펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석)

  • 이성혁;이준식;박승호;최영기
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.