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Simulation of Excitation and Propagation of Pico-Second Ultrasound
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Abstract This paper presents an analytic and numerical simulation of the generation and propagation of pico-second 
ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of 
laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in 
microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon 
to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short 
ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically 
simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. 
Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave 
pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is 
successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of 
thickness for thickness less than 100 nm.
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1. Introduction

Thin films and microstructures are widely 
used in the semiconductor industry, automotive 
industry, biotechnology and numerous electrical 
devices such as CMOS. The growing importance 
of electromechanical microstructures (MEMS) 
requires a rapid characterization during and after 
fabrication. Many different methods such as 
scanning electron microscopy (SEM) and tunneling 
electron microscopy (TEM) techniques provide 
data of roughness and surface quality and of 
electrical and optical properties [1]. However, the 
mechanical quantities are measured mostly by 
destructive techniques such as nano-indentation, 
even though it is one of key parameters for 
manufacturing processes and conditions in the 
micro-devices and performance of thin films. 
Since the thickness of films and coatings 
significantly influence the resulting mechanical 
properties, non-destructive measurement techniques 
are necessary, which can provide mechanical 

properties of coatings or microstructures after 
fabrication. Recently few nondestructive testing 
methods including GHz scanning electronic 
acoustic microscopy (SAM) and ultrasonic atomic 
force microscopy (UAFM) techniques were 
introduced and applied to MEMS [1]. In these 
technologies, surface waves or Lamb waves are 
generated on thin films via acoustic lens and 
micro-structured cantilever for measurement of 
mechanical properties of thin films. Main reason 
to use guided waves in SAM and UAFM is that 
those technologies have a limited capability in 
acoustic frequency, which is, at best 1 GHz, so 
that ultrasonic wavelength is about 1 m. They 
also need a relatively complex inversion process 
like dispersion analysis to estimate mechanical 
parameters or acoustic velocity from experimental 
data. This limitation is a critical barrier for 
nondestructive evaluation of nano-scale MEMS. 
In order to achieve an acceptable resolution the 
wavelength of the acoustic pulses propagating 
through the structure has to be short compared 
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Fig. 1 Schematic diagram of acoustic generation by 
ultrafast pulsed laser

to the geometrical dimensions of the specimen. 
This condition becomes especially challenging 
when inspecting microstructures and coatings 
with sub-micron dimensions. The acoustic 
wavelength to analyze microstructures and thin 
films needs to be in the nanometer range. This 
small wavelength corresponds to acoustic pulses 
having frequency content beyond 100 GHz. 
Unlike conventional laser ultrasound, ultra-short 
laser pulses in femto-second scale has been 
proved to excite the ultra-short ultrasound of 
hundreds of GHz without any damage to 
materials [3-5]. In the papers by C. Thomsen 
and J. K. Chen [6-9], a theory and experiment 
of the excitation and detection of acoustic pulses 
with short laser pulses is presented well enough 
as long as the temperature diffusion plays a 
minor role or the laser pulses are not too short. 
Several papers about the excitation of acoustic 
pulses in semiconductors and microstructures is 
also reported [10,11]. But a very rare research 
on ultrafast laser-based ultrasound are found in 
Korea only except a joint research done by 
KAERI with Idaho national research center of 
United States in 2009. 

The simulation of pico-second ultrasound 
consists of the thermoelastic excitation and the 
propagation of the acoustic pulse by combining 
the theoretical formulation of each part with the 
appropriate numerical method. Accurate numerical 
model for the excitation and propagation of 
acoustic pulses has been sought using a simple 
thermo-mechanical model which neglects the 
short duration of heat transfer by incident laser 
pulse [11,12]. But general numerical models 
especially with a calculation of the wave 
propagation in 1-, 2- or 3D configurations have 
not been realized yet. 

In this paper, the excitation and propagation 
of acoustic pulses produced by ultra-short laser 
pulses are presented using an analytical model 
which is based on the work of Thomsen [5]. 
Using finite difference (FD) methods, the wave 
equation with thermal disturbance induced by 

laser is discretized and analyzed to calculate the 
waveforms of acoustic pulse in aluminum 
substrate. Numerical solutions by Matlab are 
discussed by comparing with analytical solutions.

2. Thermo-Dynamic Equations for Laser 
Induced Acoustic Pulse

If the surface of an absorbing metal in thin 
film or metallic microstructure is irradiated with 
ultra-short laser pulses having durations of less 
than 100fs as shown in Fig. 1, the laser pulses 
are absorbed within a characteristic, material 
dependent distance, the absorption length . The 
absorption length  or penetration depth 
expressed by [7]

 
 (1)

is calculated with the wavelength of the laser ℓ 
and the imaginary part of the refraction index   
of the material. The absorption depth  of the 
ultra-short laser is very small down to few nm 
depending on the material. For example, 
aluminum has a penetration depth of about 7.5 
nm. The energy  deposited per unit volume 
at a distance z is given by, when a short pulse 
is incident on uniformly irradiated area   of 

the free surface,
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Table 1 Material property of Al and Cu

Material
Specific heat
[106 J/mm3]

C

Reflectivity
R

Thermal
Expansion
[106/K]

Penetration 
depth
[nm]

Aluminum 2.42 0.87 23.1 7.54

Copper 3.45 0.96 16.5 12.65

Fig. 2 Temperature distribution induced by ultra-short 
laser pulse in aluminum and copper

in which   denotes the optical reflectivity of 

the surface, Q  the energy of the incident laser 
beam and  the penetration depth according to 
Eq. (1). 

The area  of the specimen irradiated by 
the laser pulse is large compared to the film 
thickness  and the absorption length . 
Therefore the excitation of the acoustic waves is 
considered in the z direction only. In general, 
metallic surface has absorption-lengths (pene- 
tration depth)   in the order of 10 to 20 nm 
which is three orders of magnitude smaller than 
the experimentally achievable spot size 
(~5-50 μm in diameter). In principle, the 
temperature increase ∆  in a solid is calculated 
with the induced energy  and the specific heat 
  as

∆  
 (3)

Then the temperature increase ∆  yields
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The temperature is assumed to be homogeneously 
distributed in the plane and exponentially 

decaying in the thickness direction z with 
z

e ζ
−

 

as seen in Eq. (4). One example of the 
temperature rise in aluminum is represented in 
Fig. 2, where a laser pulse with 100fs duration 
(full width at half maximum), an intensity of 
2.45 J/m2 and an irradiated spot size of 50 μm 
in diameter is used. At a distance z equal to the 
absorption length  the induced temperature 
drops to 40% of the temperature increase at the 
surface. The temperature increases at a distance 
of three times the absorption length 3 amounts 
to only 5%. In other words, the temperature is 
affected only within a region of three times the 
absorption length  by the incident pump pulse.  
Fig. 2 shows that the induced temperature 
change in copper and aluminum is similar but 

the temperature increase in copper is very small 
compared to the changes in aluminum. It is 
mainly caused by the higher optical reflectivity 
of copper and aluminum (Table 1). The 
calculations in Fig. 2 are obtained with Eq. (4) 
and the values in Table 1. Additional effect 
such as heat diffusion is not taken into account 
in this model. 

 The stress-strain-temperature relations which 
correspond to a generalization of the Hooke- 
Duhamel law is

  ∆ (5)

in which  are the components of the strain 
tensor,  the components of the stress tensor, 
 the elastic compliance tensor, ∆  the 
temperature increase and  the coefficients of 
linear thermal expansion, which constitute a 
diagonal-symmetric tensor. Assuming isotropic 
linear elastic material, the stiffness tensor  
is replaced by  and  as Lamé constants. 
Since the spot size is very large compared with 
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(a)

(b)

Fig. 3 Illustration of the propagation of the 
ultrasonic pulses in aluminum and copper 
after (a) 5 picoseconds, (b) 10 picoseconds  

the absorption length , and film thickness , 
the only nonzero component of the strain tensor 
is   and therefore, Eq. (5) can be reduced to

( ) ( 2 ) ( ) (3 2 ) T(z) σ λ μ ε λ μ α= + − + Δz zz z

(6)

So, the stress  in the material consists of a 
mechanical part   and a thermal part 
.

    (7)

The thermal stress  is caused by the 
instantaneous temperature rise ∆ , which 
is according to Eq. (7)

   ∆ (8)

With the equation of motion of the only 
component z, the kinematic relation becomes

2

z2    and   σρ ε∂ ∂ ∂
= =

∂ ∂ ∂
z z zu u

t z z
(9)

From Eq. (8) and (9), the strain component 
caused by the propagating acoustic pulse and 
the time independent strain component caused 
by the thermal expansion can be calculated with 
a stress free boundary condition at the surface 
of the material [7,8].
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The strain pulse propagating in thickness direc- 
tion (z direction, Fig. 3) with the longitudinal 
wave velocity , is determined by the Lamé 
constants and the density of the film as follows

2λ μ
ρ
+

=lc (11)

In Eq. (10), it is also assumed that the 
temperature rise occurs instantaneously and that 
after this rise temperature remains constant. This 

assumption remains valid when the strain pulse 
moves much less than the spatial length of 
strain pulse and the penetration depth  during 
the duration of laser pulse. Usually the grains of 
the polycrystalline metals have arbitrary 
orientation. The diameter of the irradiated spot 
size on the surface of the material is 2 or 3 
orders of magnitude larger than the grain size. 
So the bulk acoustic wave velocity  can be 
assumed a constant in the direction of 
propagation plane. The quantitative results in 
Fig. 3 are based on the induced temperature 
change presented in Fig. 2 and the corresponding 
laser parameters, as well as the mechanical 
properties of materials in Table 1. Fig. 3(a) 
displays the strain pulse at 5 ps after the laser 
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Fig. 4 Strain pulses at z=100nm from the free 
surface of aluminum and copper

Fig. 5 Frequency spectrum of the strain pulse at 
100nm from the free surface 

pulse is incident on the surface, while Fig. 3(b) 
represents the strain pulse at 10 ps after the 
laser pulse is incident on the free surface. 
Aluminum shows the higher bulk wave speed 
than copper. Also the amplitude of the generated 
acoustic pulse of Al is larger than the pulse 
shape of copper due to the bigger thermal 
expansion coefficient.

According to Fig. 3 the strain distribution in 
the materials can be divided into two parts: a 
static part due to the thermal expansion near the 
free surface and a propagating part. The 
propagating strain pulse again consists of two 
equal components with opposite signs: During 
the absorption of the laser pulse one part is 
propagating directly in the positive thickness 
direction   (part with negative strain) during the 
absorption of the laser pulse and one originally 
propagating in the negative direction (-). The 
second one is instantaneously reflected at the 
stress-free boundary, therefore its strain is 
positive. The acoustic wavelength of the strain 
pulse is an order of 10 nm as shown in Fig. 3, 
whereas the pulse width is about 10 picoseconds 
in time scale as in Fig. 4. The spectrum of this 
pulse travelling from the boundary into the 
medium is illustrated in Fig. 5 for aluminum, 
where it contains hundreds of GHz components 
spanning up to THz domain.

3. Numerical Calculation of 1-D Elastic Wave 
Propagation

Previous analytical model gives a fast but 
rough calculation of the pico-second acoustic 
pulse without extensive works. But it is not able 
to compute the excitation and propagation of 
ultrasound in microstructures with complex 
shape. Unlike analytical models, numerical 
models are more flexible for describing the 
travelling wave in specimens consisting of a 
stack of various layers. For the calculation of 
hyperbolic differential equations like the wave 
Eq. (9) it is well known to be not worthy to 
use implicit algorithms. Therefore, in this paper, 
an explicit staggered algorithm is implemented 
for computational efficiency. The staggered 
algorithm has the advantage of the simple 
implementation of the boundary condition and in 
addition this algorithm can also be used in 2D 
or 3D problems [13]. 

If the derivative with respect to time of the 
stress-strain relation and the strain-displacement 
relation of Eq. (9) is used, we get the following 
set of differential equations:

Wave equation (Newton): 

2

z2    and    σρ ε∂ ∂ ∂
= =
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z z zu u

t z z
(12)
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Fig. 6 One dimensional discretization of spatial 
domain at t=0 

Stress-strain relation: 

( ) ( )( 2 ) (3 2 ) [ T(z,t)] σ ελ μ λ μ α∂ ∂ ∂
= + − + Δ
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z zz z
t t t (13)

Strain-displacement relation:
2

zε∂ ∂
=
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zu

t t z
(14)

If the velocity is expressed by 
∂

=
∂

z
z

u v
t , above 

equations get combined and reduced to the 
following set of equations.
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ρ
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Or substituting Eq. (15) into Eq. (16) gives 

2 2 2

2 2 2

( 2 ) (3 2 ) [ T(z,t)] σ σλ μ λ μ α
ρ

∂ ∂+ ∂
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z z
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It is clearly seen from Eq. (17) that the strain 
pulse propagates with longitudinal wave velocity 

 



  after the thermal disturbance 

∆  is applied. For numerical solution of 
the simultaneous Eqs. (15) and (16), both 
equations are discretized in the time and space 
domain. In the space domain the 1-D grid is 
used for the z-direction of the thickness in the 
material. The superscripts c, r and l denote the 
center, right and left of the corresponding 
grid-node as shown in Fig. 6. The spatial 
discretization of Eq. (15) and (16) can be 
written as follows

1    σ σ
ρ

∂ −
≈

∂ Δ

c r l
z z zv
t z

(18)

( 2 ) (3 2 ) [ T(z,t)] σ λ μ λ μ α∂ − ∂
≈ + − + Δ

∂ Δ ∂

c r l
z z zv v

t z t
(19)

The temporal discretization is made by Taylor’s 
central approximation.

( ) ( )   
2

∂ +Δ − −Δ
≈

∂ Δ
f f t t f t t
t t , 

or ( ) ( ) 2    
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2 2

  

σ σ σ
•Δ Δ

+ ≈ − + Δzz z
t tt t t t (22)

The finite difference Eqs. (20)-(22) approxi- 
mated by truncated Taylor series needs to 
choose the right step size in time and space 
domain for reducing numerical dispersion and 
errors. To avoid the exponential growth of the 
amplitude during calculation, a critical time step 
∆ governed by the Neumann stability analysis 
was adopted to this one dimensional analysis 
such that [14], 

  Δ
Δ ≤

l

zt
c (23)

On a stress free boundary shown in Fig. 6, 
the stress in normal direction vanishes at the 
surface where the laser pulse is incident. In 
order for this boundary condition to be satisfied, 
an additional imaginary grid point just out of 
the medium surface is set to negative value of 
the first stress node   inside the material. 
The approximation of the velocity is determined 
by the interpolation of the neighboring stress 
grid points in Eq. (18). 
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(a)

(b)

Fig. 7 Acoustic excitation in (a) an unbounded, (b) 
a half-bounded medium with free surface

Fig. 8 Stress distribution induced by temperature 
rise from laser puls

4. Simulation Results and Discussion

The numerical scheme presented in this 
work was applied to two cases for the 
simulation of excitation and propagation of 
picosecond ultrasound, one of which is a 1-D 
homogeneous isotropic unbounded medium and 
the other is a 1-D half-space  ≥  with free 
boundary surface as shown in Fig. 7.

Laser pulse used in Fig. 7 (a) and (b) has 
the same characteristic of the laser given by 
Fig. 2 in the analytical analysis. In the 
unbounded medium (Al) of Fig. 7(a), a heat 
source of laser pulse is located inside the 
material and applied for a very short time to 
excite acoustic wave. Temperature distribution 
by the ultrafast laser source is assumed to have 
an inversed Garbor function as shown in Fig. 8, 
where a stress (negative) distribution is repre- 
sented with the distance from the center of heat 
source. 

Starting the numerical calculation presented 
in the previous section with initial condition of 
stress given by Fig. 8, particle velocities of all 
nodes after a time interval ∆ are determined 
first from the dynamic relation between stress 
and velocity given in Eq. (15). Then velocity 
values are substituted into discretized equation 
(16) for calculation of stress at next time step. 
This sequence of calculation is performed by 
Matlab until a certain amount of time (30 ps). 
One example is displayed in Fig. 9 to show the 
propagation of an acoustic pulse generated by 
initial thermal stress of Fig. 8 in 1-D unbounded 
medium. In Fig. 9, initial stress distribution of 
Fig. 8 is split into two stress pulses of same 
shape in spatial domain and spread over the 
medium with longitudinal wave velocity. Fig 
9(a) represents two acoustic pulses same but 
propagating in opposite direction at 2 ps after 
the laser pulse is applied. Fig. 8(b) and (c) 
illustrate the same acoustic pulses propagating 
after 6 and 8 pico-seconds (ps) respectively after 

the laser pulse is illuminated. Fig. 9(d) displays 
three dimensional representation of the propa- 
gating acoustic pulses of Fig 9(a)-(c), where 
stress in vertical axis is drawn versus spatial 
and temporal axis. It is also seen from the 
figures that a wiggling noisy signal is produced 
at the center and magnified with the increase of 
propagation time and distance. It is caused 
mainly by singular point at the peak in the 
center of Fig. 8 where no derivatives exist. 
Error in FD approximation at this singular point 
increases and propagates as the time step 
proceeds. 
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(a)

(b)

(c)

(d)

Fig. 9 Propagation of acoustic pulse in 1-D
isotropic unbounded medium(Al) after laser
pulse is applied, (a) 2 ps, (b) 6 ps, (c) 
8 ps, (d) 3D visualization

Fig. 10 Propagation of acoustic pulse in 1-D 
isotropic half-bounded medium(Al) after 
laser pulse is applied on its surface

Next Fig. 10 shows the bulk wave propa- 
gations in a half-bounded aluminum substrate in 
Fig. 7(b) calculated with the presented FD 
method. In Fig. 10, three consecutive acoustic 
pulses from 10ps to 20 ps after the laser pulse 
is hit are displayed simultaneously for compari- 
son. In Fig. 10, x-axis represents the distance 
from free surface of medium and y-axis indicates 
strain. Each pulse has almost the same pulse 
shape of nano-order width and travels with the 
longitudinal wave velocity    sec. It is 
also obvious that the travelling acoustic pulse 
has high frequency content which is caused by 
the abrupt sign change. For the presented 
numerical results a time step ∆ of 2fs was 
chosen. The spatial step size of the grid in the 
media was determined by the wave speed   
and the time step ∆ of Equation (23). 
Numerical solution of Fig. 10 is little different 
from the analytical solution of the wave equation 
in Fig. 3. Unlike the analytical solution, it shows 
a smooth peaks and errors in magnitude and 
phase appearing as a smearing and wiggling of 
waveforms. It is because of numerical dissipation 
and dispersion occurring during FD discretization 
in space and time domain. For instance, when 
comparing the amplitude of the analytical 
solution (Fig. 3) and the numerically calculated 



 Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 6: 457-466 2014 465

results (Fig. 10) far enough from the surface, the 
propagating strain pulses of the peak-peak 
amplitude of ± in Fig. 10 should have 
an amplitude of ± as in the analytical 
solution (Fig. 3). This is partly because the 
spatial grid is slightly too rough for sampling 
the sharp positive and negative peaks occurring 
at the sign change of the travelling acoustic 
pulse. Even though there are numerical 
algorithms to reduce or eliminate the numerical 
errors by means of advanced FDM methods such 
as Lax-Wendroff or Crank-Nicolson scheme, the 
results obtained in this analysis without such 
numerical optimization is acceptable for the 
purpose of understanding the generation of 
picosecond ultrasound. By reducing the temporal 
and the spatial step size as well, this inaccuracy 
of the sampling can nearly be eliminated and 
will be covered in future work. 

5. Conclusions

Excitation and propagation of an ultrasound 
with nano-scale wavelength realized by using 
ultrafast laser technique is described using a 
mathematical model and simulated by numerical 
method. The laser pulse in the order of 100 
femtoseconds applied to the surface of aluminum 
substrate excites the free electron of material 
leading to lattice vibration, which turns into 
acoustic pulse. Analytical model combines the 
energy transfer from optical photon to phonon 
with elasto-dynamic wave equation to calculate 
the strain pulse induced by ultrafast laser pulse 
in 1-D half-bounded medium of copper and 
aluminum. Analytical solution shows that the 
excited acoustic pulse is the longitudinal wave 
with extremely high frequencies up to THz and a 
very short wavelength of 10 nm order. So it can 
be employed for the time-of-flight measurement 
to characterize thin films and microstructures. 
Apart from the analytical thermo-mechanical 
model, numerical models using finite differences 

(FD) for describing the transient heating after 
absorption of the laser pulse are implemented to 
investigate the generation and propagation of 
bulk acoustic waves in two cases of boundary 
conditions such as 1-D unbounded and half- 
bounded medium. The proposed FD techniques 
are successfully applied and found effective to 
calculate the bulk waves and characterize acoustic 
pulses. It can be concluded from the simulation 
results that the velocity of the acoustic pulse is 
measured easily from TOF of pico-second bulk 
wave to calculate the thickness or material 
properties such as Young’s modulus of thin films 
in microstructures. 
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