• Title/Summary/Keyword: Ultra filtration system

Search Result 30, Processing Time 0.021 seconds

Porous polymer membranes used for wastewater treatment

  • Melita, Larisa;Gumrah, Fevzi;Amareanu, Marin
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • This paper focuses on the study of the most recent ultra-filtration techniques, based on porous polymer membranes, used for the treatment of wastewater from oil, mine and hydrometallurgical industries. The performance of porous membranes used in separation and recovery of oil and heavy metals from wastewater, was evaluated by the polymer composition and by the membrane characteristics, as it follows: hydrophobicity or hydrophilicity, porosity, carrier (composition and concentration), selectivity, fouling, durability, separation efficiency and operating conditions. The oil/water efficient separation was observed on ultra-filtration (UF) techniques, with porous membranes, whereas heavy metals recovery from wastewater was observed using porous membranes with carrier. It can be concluded, that in the ultra-filtration wastewater treatments, a hybrid system, with porous polymer membranes with or without carrier, can be used for these two applications: oil/water separation and heavy metals recovery.

A Survey of water pollution and the development of water treatment system on agricultural Area (농어촌의 수질오염과 수질특성에 적합한 정수 처리시스템의 개발에 관한 연구(1))

  • 정문호;김영규;조태석;배현주;신명옥;김수연;김민지;김민영;김수복
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • The purpose of this study was to investigate the removal effect and variation of contaminated water by various water treatment processes using sediment filter, activated carbon, photocatalysis, reverse osmosis, ultra violet sterilizer and ultra filtration. The removal effect of chloride and trace metal was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon but high in impregnated activated carbon. The removal effect of TCE was low in sand and ultra filter system as compared with activated carbon. Ultra filtration process was effective for purify agricultural water without E.coli. Reverse osmosis was effective to remove heavy metal and activated carbon was effective to remove halogenated organic chemical compound. The flux and the removal effect of COD in spiral wound ultrafilter were higher than the hollow fiber ultrafilter.

  • PDF

A Study on the Removal Effect of Bacteria and E. Coli. by Water Treatment Processes using Activated Carbon and Membrane (정수처리공정에 따른 일반세균과 대장균군의 제거에 관한 연구)

  • 조태석;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 1997
  • This study has been designed to check the removal effect of contaminated water by various water treatmemt processes using sediment filter, activated carbon, reverse osmosis membrane, ultra vilolet sterilizer and ultra filtration and then to analyze the change of pH, the concentration of chlorides, bacteria and E. coli. after 24 hours. pH has increased as much as 0.15-0.32 by activated carbon but decreased sharply by reverse osmosis treatment after 24 hours. The removal effect of chloride was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon. Ultra filtration process was effective for purify agricultural water containg bacteria and E.coli.

  • PDF

A multi-level approach for the optimization of an ultrafiltration plant processing surface water

  • Zondervan, E.;Roffel, B.
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.61-74
    • /
    • 2010
  • This paper will integrate models at different levels (from filtration, backwashing to chemical cleaning and membrane lifetime) that can be used to minimize overall operating costs of a dead-end ultra filtration process that is used for the purification of surface water. Integration of the models leads to a multi-level optimization problem (at different levels different objectives should be reached). This problem is solved as a MINLP. Systematic modelling and optimization of membrane systems is not extensively discussed in the scientific literature. In this paper the first steps are taken in the formulation of proper models and the use of systems engineering tools to come to real optimal operating conditions. The optimized variables are used to calculate fouling profiles which can subsequently be used as inputs for a control system that actually enforces the profiles to a real pilot plant.

A feasibility study of a pilot scale two-phase anaerobic digestion with ultra filtration for the treatment of garbage leachate (음식물 탈리액 처리를 위한 파일럿 규모의 막결합형 2상 혐기성 소화 공정 가능성 평가)

  • Lee, Eun-young;Heo, Ahn-hee;Kim, Hyung-kuk;Kim, Hee-jun;Bae, Jae-ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.539-545
    • /
    • 2009
  • A feasibility of a pilot scale two-phase anaerobic digestion with ultra filtration system treating garbage leachate were evaluated. The treatment system consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. The average COD removal efficiency of the treatment system was 95% up to the OLR of 3.1 g COD/L/d. The higher COD removal efficiency with membrane unit resulted from the removal of some portion of soluble organics by membrane as well as particulate materials. When the membrane unit was in operation, bulk liquid in acidogenic and methanogenic reactors was partially interchanged, which maintained the acidogenic reactor pH over 5.0 without external chemical addition. Also, with the production of methane in the acidogenic reactor, the organic loading rate of the methanogenic reactor reduced. The initial flux of the membrane unit was $50{\sim}60L/m^2/hr$, but decreased to $5 L/m^2/hr$ after 95 days of operation due to clogging caused by particulate materials such as fibrous materials in garbage leachate. To prevent clogging caused by particulate materials, a pretreatment system such as screening is required. With the improvement with membrane unit operation, the two-phase anaerobic digestion with ultra filtration system is expected to have the possibility of treating garbage leachate.

Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment (UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가)

  • Yang, Keun-Mo;Lim, Dong-Hoon;Kim, Joon Ha;Jung, Hyung-Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • In the present study, sea water reverse osmosis desalination system was composed with an ultra-filtration membrane as a pre-treatment. Sea water was induced into the pre-treatment composed with an auto-screen filter and an ultra-filtration membrane. It was proved that the permeate of the pre-treatment was adequate for reverse osmosis desalination system by measuring the $SDI_{15}$ and the turbidity. Feed salinities was changed by mixing the brine and the permeate. Inlet salinities effected the performances of sea water reverse osmosis desalination system in a large amount such as the salt rejection, the recovery ratio, the pressure, the product salinity. Energy consumptions per the ton of the product were almost linearly increased with the inlet salinities.

Status of Membrane Filtration in Japan : Application for Water Supply

  • Minami, Katsuyoshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.55-62
    • /
    • 1997
  • In Japan, the membrane filtration is becoming a common technology for municipal water supply system especially for small plant. 6 years before (1991), the national research project of membrane filtration for small plant has started. The project was named as "MAC 21", MEMBRANE AQUA CENTURY 21. In the project the Ministry of Health and Welfare, 8 universities and 18 water treatment plant companies have been involved. This was the first attempt to research a common theme in joint with government, universities and private companies. After three years, the guide line for membrane filtration application for small plant has been established. This has promoted to install some actual plant. And also, another joint research for "RESEARCH OF MEMBRANE FILTRATION FOR ADVANCED WATER TREATMENT" has started in 1994 and completed in March, 1997. The project was named as MAC21. In the former project the main objectives were removal of turbidity and bacteria from water. However, in new project the objective was establishment of the further advanced membrane filtration technology which would be applicable for trace chemical components removal such as tri-halo-methane pre-courser, agricultural chemicals removal, offensive smell and taste removal and virus removal. For the objectives, application of nanofiltration and hybrid-system, a combination of micro-filtration ultra-filtration with biological, ozone and activated carbon treatment process have been studied. In addition, application of membrane filtration for treatment of back-wash waste water originated from membrane filters and conventional sand filters has.been studied. At the end of March of this year, about 30 membrane filtration plants are actually supplying the water, the total treatment capacity is about 6,000 m$^{3}$/day and another 20 will be installed within one year.led within one year.

  • PDF

A Pilot-Scale Microfiltration/Ultrafiltration system for Drinking Water Treatment (상수처리를 위한 파일롯 규모의 정밀여과/한외여과 시스템)

  • Kim, Hanseung;Oh, Jeongik;Kim, Chunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.770-777
    • /
    • 2004
  • Three pilot-scale membrane systems were operated using lake water as influent in this study. Microfiltration (MF) membrane with pore size of 0.01 m was used in Systen I of which filtration mode was set at constant pressure of $1kgf/cm^2$. Ultrafiltration (UF) membranes with molecular cutoff (MWCO) of 80,000 and 13,000 were used in System II-1 and II-2, respectively. Constant flow mode was applied at the range between 0.7 and $1.5m^3/m^2{\cdot}d$ (average of $1.1m^3/m^2${\cdot}d) for System II-1 and between 0.37 and $1.65m^3/m^2{\cdot}d$ (average of $1.18m^3/m^2{\cdot}d$) for System II-2. In System I, the flux changed from $1m^3/m^2{\cdot}d$ to $0.2m^3/m^2{\cdot}d$ during the operation time of 5 months. System II showed recovery of 94% under the allowable maximum pressure of $3kgf/cm^2$ during the same operation period. From these results, the efficient operation was observed in constant flow mode with respect to filtration time and recovery. Average filtrate turbidity showed 0.0071 NTU in System I and 0.0054 NTU in System II, which implied that high turbidity removal was obtained in both MF and UF systems with no significant difference between MF and UF. From the fact that membrane flux depends largely on membrane type and operation mode, a guideline of optimum design and operation should be suggested for application of membrane systems to full scale water treatment.

Improvement of Water Quality Using Ultra Filtration System in Artificial Seed Production of Olive Flounder, Paralichthys olivaceus (넙치 인공종묘생산에 있어 막분리 여과 시스템을 이용한 수질환경의 개선)

  • Jung Gwan Sik;Ann Chang Bum;Oh Myung Joo;Ji Seung Cheol;Yoo Jin Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.639-643
    • /
    • 2002
  • Water quality, bacterial phase and fish growth rate were analyzed in the process of artificial seed production of flounder (Paralichtys oliraceus) larvae to investigate the water quality in rearing tank using Ultra Filtration System (UES). Sand Filtration System (SFS) and Ultra Filtration System (Ins) were set up in the experimental group. For the analysis of water quality, pH, salinity, DO, SS, COD, $NH_{4}^{+},\;NO_{2}^{-},\;NO^-,\;DIN$ (dissolved inorganic nitrogen) and DU (dissolved inorganic phosphate) were measured. There was no data difference between SFS group and UES group in most analysis items, but the UEs group showed low salinity and low 55 values, such that salinity was $33.5\%_{\circ}$ in SES group and $30.2\%_{\circ}$ in WS group and 55 was 15.5 mL/L in SES group and 7.0 mL/L for UPS group. For changes in bacterial phase and TBC (Total Bacterial Counts), in SES group, 6$\times$10^{5}CFU/mL in seawater decreased to the ratio of about 116, and TBC, Genus Vibrio and bacteria in the Genus Acinetobacter and Genus Micrococcus sharply increased after nine days, while stable bacterial phase was maintained low in UES group during the experiment except for Genus Ajteromonas. In the growth of the larvae, fish length was 17.0 mm (SGR 14.0) in the SES group and 18.8 mm (SGR 14.3) in the UFS group. It is concluded that when water is supplied for artificial seed production with WS, stabilization of water quality condition and inhibition of bacterial multiplication are possible. When production environment becomes stable, stable growth of fish becomes possible by reduction of environmental stress.