• Title/Summary/Keyword: Ultra Wideband

Search Result 500, Processing Time 0.034 seconds

Improvement of Ultra-wideband Link Performance over Bands Requiring Interference Mitigation in Korea

  • Rateb, Ahmad M.;Syed-Yusof, Syarifah Kamilah;Fisal, Norsheila
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Ultra-wideband (UWB) systems have witnessed a debate over whether they may cause interference to other existing and future narrowband systems sharing their band of operation. The detect and avoid (DAA) mechanism was developed as a solution to reduce interference to narrowband systems in order to ease regulatory concerns. It works by adaptively reducing the transmitted power at the overlapping bands upon detecting an active narrowband link. However, employing DAA degrades the performance of UWB transmissions. In this paper, we present the Korean UWB regulations as an example of regulations that require DAA in certain bands. We investigate DAA's impact on performance and propose a method to mitigate it, which provides UWB with the more efficient support of the DAA mechanism and enables it to avoid a larger number of narrowband users while sustaining the data rate. Results show significant improvement in performance with the application of our technique compared to conventional performance.

Development of Ultra-Wideband Antennas

  • Chen, Zhi Ning
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2013
  • The ultra-wideband (UWB) spectrum available for commercial applications has offered us an opportunity to achieve high-speed wireless communications and high-accuracy location applications. As one of key research areas in UWB technology, a lot of innovative broadband and miniaturization techniques for UWB antennas have been greatly invented and developed for years. This paper reviews the development of UWB antenna design in the past decade. Starting with a brief introduction of the specific requirements and promising applications of UWB systems, the unique design challenges of UWB antennas are highlighted. Next, the important milestones of UWB antenna designs are briefed. After that, a variety of planar UWB antennas invented for broadband operation, miniaturization, and multiple functions are introduced. Last, the comments on the development of UWB antennas in future are shared.

Initial Timing Acquisition for Binary Phase-Shift Keying Direct Sequence Ultra-wideband Transmission

  • Kang, Kyu-Min;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper presents a parallel processing searcher structure for the initial synchronization of a direct sequence ultra-wideband (DS-UWB) system, which is suitable for the digital implementation of baseband functionalities with a 1.32 Gsample/s chip rate analog-to-digital converter. An initial timing acquisition algorithm and a data demodulation method are also studied. The proposed searcher effectively acquires initial symbol and frame timing during the preamble transmission period. A hardware efficient receiver structure using 24 parallel digital correlators for binary phase-shift keying DS-UWB transmission is presented. The proposed correlator structure operating at 55 MHz is shared for correlation operations in a searcher, a channel estimator, and the demodulator of a RAKE receiver. We also present a pseudo-random noise sequence generated with a primitive polynomial, $1+x^2+x^5$, for packet detection, automatic gain control, and initial timing acquisition. Simulation results show that the performance of the proposed parallel processing searcher employing the presented pseudo-random noise sequence outperforms that employing a preamble sequence in the IEEE 802.15.3a DS-UWB proposal.

  • PDF

Analysis and Applications of Multi-user DS-PAM and TH-PPM UWB System (다중 사용자 환경에서의 DS-PAM과 TH-PPM UWB 시스템의 분석과 응용)

  • Sung, Tae-Kyung;Kim, Dong-Seek;Kim, Cheol-Seong;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.603-610
    • /
    • 2008
  • In this paper, analytical methods for calculating the average probability of bit error of direct sequence pulse amplitude modulation ultra wideband (DS-PAM UWB) system and time hopping pulse position modulation ultra wideband (TH-PPM UWB) system are given. For the multi-user DS-PAM UWB system, the bipolar pulse amplitude modulation is used in order to achieve better performance. As we know, more attention is paid to the TH-PPM UWB systems recently. In this paper. we first introduce the accurate BER calculation methods of the multi-user DS-PAM UWB and TH-PPM UWB systems and then give the performance analysis over the ideal AWGN channel and a correlation receiver. Furthermore, we also introduce their applications in image transmission and data transmission and give the simulation results. The analytical method yields simple and exact formulas relating the performance to the system parameters.

Optimal Waveform Design for Ultra-Wideband Communication Based on Gaussian Derivatives

  • Guo, Yong
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.451-454
    • /
    • 2008
  • Ultra-wideband (UWB) radios have attracted great interest for their potential application in short-range high-data-rate wireless communications. High received signal to noise ratio and compliance with the Federal Communications Commissions (FCC) spectral mask call for judicious design of UWB pulse shapers. In this paper, even and odd order derivatives of Gaussian pulse are used respectively as base waveforms to produce two synthesized pulses. Our method can realize high efficiency of spectral utilization in terms of normalized effective signal power (NESP). The waveform design problem can be converted into linear programming problem, which can be efficiently solved. The waveform based on even order derivatives is orthogonal to the one based on odd order derivatives.

Improved object recognition performance of UWB radar according to different window functions

  • Nguyen, Trung Kien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.395-402
    • /
    • 2019
  • In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.

Distance Estimation Method of UWB System Using Convolutional Neural Network (합성곱 신경망을 이용한 UWB 시스템의 거리 추정 기법)

  • Nam, Gyeong-Mo;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.344-346
    • /
    • 2019
  • In this paper, we propose a distance estimation method using the convolutional neural network in Ultra-Wideband (UWB) systems. The training data set used to learn the deep learning model using the convolutional neural network is generated by the MATLAB program and utilizes the IEEE 802.15.4a standard. The performance of the proposed distance estimation method is verified by comparing the threshold based distance estimation technique and the performance comparison used in the conventional distance estimation.

  • PDF

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.

Self-Complementary Spiral Antenna Design Using a Ultra-Wideband Microstrip-to-CPS Balun (초광대역 마이크로스트립-CPS 발룬을 이용한 Self-Complementary 스파이럴 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • A design and its experimental result of a wideband self-complementary spiral antenna for UWB USPR(Ultrashort-Pulse Radar) system applications is presented. By utilizing the planar-type ultra-wideband microstrip-to-CPS balun, ultra-wideband characteristics of the inherent spiral antenna are retrieved. Also, the design procedure of the spiral antenna is simplified by performing simple impedance matching between separately designed balun and antenna. The proposed spiral antenna is equiangular self-complementary spiral antenna. The implemented antenna demonstrates widebaad performance for frequency ranges from 2.9 to 12 GHz with the relatively flat antenna gain of 2.7 to 5.3 dB and broad beamwidth of more than $70^{\circ}$. From these result, the possibility of a spiral antenna using a ultra-wideband microstrip-CPS balun is verified.

A Study on Ultra-Wideband Patch Antenna with Modified Barrel Shape (변형된 항아리형 초 광대역 패치안테나의 설계에 관한 연구)

  • Kim, Sun-Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This paper implemented an ultra-wideband(: UWB) antenna by using a modified barrel-shaped patch antenna. The designed UWB patch antenna was optimized to match UWB technical specifications by considering the sizes of barrel circle and oval(notch) which is distance between the patch and contact surface and designed antenna was implemented by $10mm(R1){\times}21.8mm$ size. Optimal values on the basis of simulated reflective loss results, the surface current distribution of designed patch antenna was analyzed in order to check operation mode of antenna and wideband mechanism. Experimental results of implemented UWB antenna, Return loss of UWB antenna the voltage standing wave ratio was 2 or less in the 1.775-13.075 GHz band, VSWR in 2 or less. And the maximum gain of approx. 1-3 dBi was found in 3.1-10.6 GHz. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra-wideband system.