DOI QR코드

DOI QR Code

Improved object recognition performance of UWB radar according to different window functions

  • Nguyen, Trung Kien (Dept. of Information & Communication Eng., Kongju National University) ;
  • Hong, Ic-Pyo (Dept. of Information & Communication Eng., Kongju National University)
  • Received : 2019.05.28
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.

Keywords

JGGJB@_2019_v23n2_395_f0001.png 이미지

Fig. 1. Measurement principle of system.

JGGJB@_2019_v23n2_395_f0002.png 이미지

Fig. 2. Transmitted pulse of P440 radar device.

JGGJB@_2019_v23n2_395_f0003.png 이미지

Fig. 3. Original waveform recorded from radar device.

JGGJB@_2019_v23n2_395_f0005.png 이미지

Fig. 4. Smoothing windows in time domain.

JGGJB@_2019_v23n2_395_f0006.png 이미지

Fig. 5. RDA block flow chart.

JGGJB@_2019_v23n2_395_f0007.png 이미지

Fig. 6. P440 UWB radar device.

JGGJB@_2019_v23n2_395_f0008.png 이미지

Fig. 7. UWB directional high gain broad band TEM antenna.

JGGJB@_2019_v23n2_395_f0009.png 이미지

Fig. 8. Movement assembly support to move radar on azimuth path.

JGGJB@_2019_v23n2_395_f0010.png 이미지

Fig. 9. Target and experiment environment

JGGJB@_2019_v23n2_395_f0011.png 이미지

Fig. 11. Image reproduced by Rectangle window.

JGGJB@_2019_v23n2_395_f0012.png 이미지

Fig. 12. Image reproduced by Hamming window.

JGGJB@_2019_v23n2_395_f0013.png 이미지

Fig. 13. Image reproduced by Hanning window.

JGGJB@_2019_v23n2_395_f0014.png 이미지

Fig. 14. Image reproduced by Blackman window.

JGGJB@_2019_v23n2_395_f0015.png 이미지

Fig. 15. Image reproduced by Kaiser window (–β = 2.5)

Table 1. P440 radar device and experiment parameters.

JGGJB@_2019_v23n2_395_t0001.png 이미지

References

  1. M. Klemm et al., "Clinical trials of a UWB imaging radar for breast cancer," in Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, pp.1-4, 2010.
  2. Ikram E Khuda, UWB Technology and its Applications, Dusan Kocur, IntechOpen, DOI: 10.5772/intechopen.79679
  3. M. S. A. Hejazi, J. Ebrahimi, G. B. Gharehpetian, M. Mohammadi, R. Faraji-Dana and G. Moradi, "Application of Ultra-Wideband Sensors for On-Line Monitoring of Transformer Winding Radial Deformations-A Feasibility Study," in IEEE Sensors Journal, vol.12, no.6, pp.1649-1659, 2012. DOI: 10.1109/JSEN.2011.2175723
  4. Traian Dogaru, Lam Nguyen, and Calvin Le, Computer Models of the Human Body Signature for Sensing Through the Wall Radar Applications, Adelphi, MD 20783-1197, 2007.
  5. F. Parrini et al., "ULTRA: Wideband Ground Penetrating Radar," in 2006 European Radar Conference, Manchester, pp.182-185, 2006. DOI: 10.1109/EURAD.2006.280304
  6. B. Levitas and J. Matuzas, "UWB radar high resolution ISAR imaging," in 2004 Second International Workshop Ultrawideband and Ultrashort Impulse Signals (IEEE Cat. No.04EX925), Sevastopol, pp.228-230, 2004. DOI: 10.1109/UWBUS.2004.1388110
  7. S. Zhu, A. Zhang, H. Shi, Z. Xu and X. Dong, "UWB ISAR high resolution imaging using near field for rotating target," in Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, pp.906-909, 2014. DOI: 10.1109/APCAP.2014.6992647
  8. Chernyak, Victor S. Fundamentals of multisite radar systems: multistatic radars and multiradar systems. CRC Press. 1998, ISBN 90-5699-165-5.
  9. Wikipedia, "Bistatic Radar," https://en.wikipedia.org/wiki/Bistatic_radar
  10. Wikipedia, "Multistatic Radar," https://en.wikipedia.org/wiki/Multistatic_radar
  11. Alan Petrov, "Monostatic radar: Common question," https://www.humatics.com/?redirect=td
  12. Ian G. Cumming, Frank H. Wong, Digital processing of Synthetic Aperture Radar data: algorithms and implementation, Artech House, Boston, 2005.
  13. Weisstein, Eric W, "Blackman Function," http://mathworld.wolfram.com/BlackmanFunction.html
  14. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, New York, 7th edition, 1993.