• Title/Summary/Keyword: Ultra Violet

Search Result 408, Processing Time 0.03 seconds

Monitoring of Climate Change of Northeast Asia and Background Atmosphere in Korea

  • Oh, Sung-Nam;Chung, Hyo-Sang;Choi, Jae-Cheon;Bang, So-Young;Hyun, Myung-Suk
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.232-235
    • /
    • 2003
  • In general, the parameters of climate change include aerosol chemical compounds, aerosol optical depth, greenhouse gases(carbon dioxide, CFCs, methane, nitrous oxide, tropospheric ozone), ozone distribution, precipitation acidity and chemical compounds, persistent organic pollutants and heavy metals, radioactivity, solar radiation including ultra-violet and standard meteorological parameters. Over the last ten years, the monitoring activities of Korea regarding to the climate change have been progressed within the WMO GAW and ACE-Asia IOP programs centered at the observation sites of Anmyeon and Jeju Gosan islands respectively. The Greenhouse gases were pointed out that standard air quality monitoring techniques are required to enhance data comparability and that data presentation formats need to be harmonized and easily understood. Especially, the impact of atmospheric aerosols on climate depends on their optical properties, which, in turn, are a function of aerosol size distribution and the spectral reflective indices. Aerosol optical depth and single scattering albedo in the visible are used as the two basic parameters in the atmospheric temperature variation studies. The former parameter is an indicator of the attenuation power of aerosols, while the latter represents the relative strength of scattering and absorption by aerosols. For aerosols with weak absorption, surface temperature decreases as the optical depth increases because of the domination of backscattering. For aerosols with strong absorption, however, warming could occur as the optical depth increases. The objective of the study is to characterize the means, variability, and trends of Greenhouse gases and aerosol properties on a regional basis using data from its baseline observatories in Korea peninsula. A further goal is to understand the factors that control radiative forcing of the greenhouse and aerosol.

  • PDF

A Study on the Development of an Energy Saving Ballast Water Treatment Device (I) (에너지 절감형 평형수 처리장치 개발에 관한 연구 (I))

  • Park, Dae-Won;Kil, Gyung-Suk;Choi, Yong-Ki;Choi, Chul-Young;Chang, Ji-Ho;Cheon, Sang-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.880-886
    • /
    • 2010
  • In this paper, we studied the application of low pressure ultra-violet (UV) lamps for the development of an energy saving ship's ballast water treat (BWT) device. We proposed the optimal arrangement of UV lamps by analyzing the energy radiated from medium- and low-pressure UV lamps. Based on the experimental results, we manufactured a disinfection chamber which is composed of low-pressure UV lamps. The rated power and the treatment capacity of the chamber are 216 [W] and 10 [$m^3$/h], respectively. This can replace a disinfection chamber treated by two 2 [kW] medium pressure lamps. The disinfection performance, however the power consumption is about one-eighteen compare to the medium pressure UV lamp, is over 94 [%] for bacteria, 93 [%] for zooplankton, and 94 [%] for phytoplankton. Therefore, it would be possible to develop an energy saving BWT device in a low capacity below 100 [$m^3$/h].

Growth of zinc oxide thin films by oxygen plasma-assisted pulsed laser deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.208-208
    • /
    • 2010
  • Zinc oxide (ZnO) is a functional material with interesting optical and electrical properties, a wide band gap (more than 3.3 eV), a high transmittance in the visible light region, piezoelectric properties, and a high n-type conductivity. This material has been investigated for use in many applications, such as transparent electrodes, blue light-emitting diodes, and ultra-violet detector. ZnO films grown under low oxygen pressure by thin film deposition methods show low resistivity and large free electron concentration. Therefore, reducing the background carrier concentration in ZnO films is one of the major challenges ahead of realizing high-performance ZnO-based optoelectronic devices. In this study, we deposited ZnO thin films on sapphire substrates by pulsed laser deposition (PLD) with employing an oxygen plasma source to decrease the background free-electron concentration and enhance the crystalline quality. Then, the substrate temperature was varied between 200 'C to 900 'C The vacuum chamber was initially evacuated to a pressure of $10^{-6}$ Torr, and then a pure $O_2$ gas was introduced into the chamber and the pressure during deposition was maintained at $10^{-2}$ Torr. Crystallinity and orientation of ZnO films were investigated by X-ray diffraction (XRD). The film surface was analyzed with atomic force microscope (AFM). And electrical properties were measured at room temperature by Hall measurement.

  • PDF

Synthesis of Mn-doped Zn2SiO4 phosphor particles by solid-state method at relatively low temperature and their photoluminescence characteristics (상대적으로 낮은 온도에서의 고상법에 의한 망간이 도핑된 Zn2SiO4 형광체 입자의 제조 및 형광특성)

  • Lee, Jin-Hwa;Choi, Seung-Ok;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.228-233
    • /
    • 2010
  • Mn-doped $Zn_2SiO_4$ phosphor particles having submicrometer sizes were synthesized by a solid-state reaction method using methyl hydrogen polysiloxane-treated ZnO, fumed $SiO_2$ and various Mn sources. The crystallization and photoluminescent properties of the phosphor particles were investigated by X-ray diffraction(XRD), scanning electron microscope(SEM), and by their photoluminescence(PL) spectra. Due to the effect of the dispersion and coherence of the methyl hydrogen polysiloxane-treated ZnO, the Mn-doped $Zn_2SiO_4$ particles were successfully obtained by a solid state method at $1000^{\circ}C$, and the maximum PL intensity of the prepared particles under vacuum ultra violet(VUV) excitation occurred at a Mn concentration of 0.02mol and a sintering temperature of $1000^{\circ}C$.

Development of Fluid Silicic Acid Coating with Paint Materials of the Steel Electric Power Facilities (강재 전력시설물을 위한 액상 규산질 도장제 개발에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Lee, Myung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Generally, organic paint on steel towers can guarantee durability in normal condition but occasionally shows its deterioration on the power line tower and electric power facilities, exposed to light(ultra violet) or heat. The objective of this study is to develope the inorganic paint material based on fluid silicic acid for steel electric power facilities. For the purpose, optimal mixture proportion is derived through 6 preliminary test and, additionally physical and durability performance test are carried out for selected specimens. The performances of developed organic paint material is similar to those of organic paint material. If resistance to chemical attack is improved, the developed inorganic paint is evaluated to replace the organic paint and obtain wide application.

Synergy Effect of Sun Protection Factor Using Method of Forming Self-Assembly of Hybrid Titanium Dioxide (하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과)

  • Cho, Hyun Dae;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.748-758
    • /
    • 2014
  • The purpose of this study is to find the optimum conditions for manufacturing titanium dioxide using a hybrid self-assembly forming method, to confirm the shape, properties and synergy effect of UV protection for hybrid titanium dioxide. Hybrid titanium dioxide, manufactured by forming self-assembly of different sizes consisting of two kinds of titanium dioxides, has micro titanium dioxide (250nm~300nm) for support material, Nano titanium dioxide (20~30nm) for surface material, coating support material. Adjustment experiments of $AlCl_3$ concentration and both titanium dioxide ratio were conducted to find the optimized conditions for the surface coating of titanium dioxide striking a negative charge, a sample made of the optimized process was confirmed through an optical analysis, particle size analysis, and potentiometric analysis. The SPF in-vitro value of the cosmetics samples containing hybrid titanium dioxide showed 15~30% higher levels than the cosmetics samples containing both titanium dioxides mixture.

펄스 레이저 증착 방법으로 성장한 InGaZnO4 박막의 물리적 특성 연구

  • Hwang, Eun-Sang;Seo, Yu-Seong;Park, Su-Hwan;Bae, Jong-Seong;An, Jae-Seok;Hwang, Jeong-Sik;Park, Seong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.74-74
    • /
    • 2011
  • 최근 새로운 형태의 디스플레이에 관한 관심이 집중되고 있다. 이들 중 특히 투명 산화물 반도체는 기존의 실리콘 기반의 반도체에 비해 가시광 영역에서 높은 투과도를 보이며, 또한 기존의 비정질 실리콘 소자에 비해서 10 cm2/Vs이상의 높은 전하 이동도 값을 가진다. 본 연구에서는 투명 산화물 반도체 소재 중 InGaZnO4를 사용하여 펄스 레이저 방법으로 Al2O3 (0001)기판 위에 비정질 상태인 a-InGaZnO4 박막을 성장 시켰다. 박막의 증착 온도를 변화(RT, $50^{\circ}C$, $150^{\circ}C$, $250^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$)시켜 성장된 박막의 구조적, 화학적, 전기적 그리고 광학적 특성을 조사하였다. 증착 온도가 $450{\sim}550^{\circ}C$ 사이에서 박막의 상태가 비정질(amorphous)에서 polycrystalline으로 성장되는 것을 X-Ray Diffraction과 Field Emission-Scanning Electron Microscope를 이용하여 확인하였고 이는 InGaZnO4 박막의 결정화 온도가 $450^{\circ}C$ 이상임을 알 수 있었다. X-ray Photoelectron Spectroscopy를 통해서 target 물질과 성장된 박막의 조성 및 화학적 상태를 고찰한 결과, 박막의 결정성 변화가 화학적 상태 변화와는 무관하다는 사실을 알 수 있었다. 온도 의존 비저항 측정을 통해 박막이 반도체 성향을 가지는 것을 확인 하였다. 또한 Hall 측정 결과 증착 온도가 올라 갈수록 전하 밀도는 증가 하지만, 전하 이동도는 다결정 박막($550^{\circ}C$)에서 급격히 감소하고, 이로 인해 비저항 값이 크게 증가함을 알 수 있었다. 이는 다결정 박막 내 존재하는 grain boundary들이 이동도 값에 영향을 준다는 것으로 추측할 수 있다. Ultra violet-Visible-Near Infrared 측정을 통해 가시광 영역에서 80%이상의 투과율을 나타내며 증착 온도가 증가함에 따라 에너지 밴드갭(Eg)이 커지는 것을 확인 할 수 있는데 이는 Hall 측정 결과에서 확인한 전하 밀도의 증가로 인해 에너지 밴드갭이 커지는 Burstein-Moss 효과로 설명할 수 있다.

  • PDF

A study on the effect of UV exposure on the skin due to external activities (외부활동에 따른 자외선 노출이 피부에 미치는 영향 연구 -피부물리치료를 위한 기초 연구-)

  • Lee, Kwang jae;Choi, Young in
    • Journal of Korean Physical Therapy Science
    • /
    • v.21 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • Background : The purpose of this study is to verify the type of influence on the skin color according to the photoaging symptoms depending on the degree of external activities among the factors that influence the skin due to UV exposure and to obtain the basic study data on the physical therapy of the skin. Methods : In this study, in order to investigate the type of influence on the skin color according to the photoaging symptoms when the body is exposed to the UV rays having various effects on our body, a study was conducted using questionnaires and skin color measurement tool targeting 20 male college soccer students with many external activities and the senior high school students who has relatively less external activities due to the preparation for college entrance. The skin color was measured and the results were compared. Result : In the test group having relatively higher external activities, while they had less use of the sunscreen, they had more degree of UV exposure, and for the recognition of ultraviolet hazard, more were aware that it was harmful. In addition, in the skin color measurement test conducted targeting the son and the father in order to investigate the association between the skin color and the genetic factors, the experimental group showed a significant difference(p<.05) but the control group did not show any significant difference(p>.05). Conclusion : Based on such study results, the UV exposure time and the use of sunscreen are thought to be an important factor in the skin care.

  • PDF

Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst (광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해)

  • Jang, Doo Il;Kim, Kil-Seong;Hyun, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

Microbiological and Chemical Detection of Antibiotic Residues in Livestock and Seafood Products in the Korean Market

  • Park, Sung-Kug;Kim, Mee-Hye;Sho, You-Sub;Chung, So-Young;Hu, Soo-Jung;Lee, Jong-Ok;Hong, Moo-Ki;Kim, Myung-Chul;Kang, Ju-Seop;Jhee, Ok-Hwa
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.868-872
    • /
    • 2007
  • The microbiological and chemical identification of antibiotic residues was attempted for livestock and seafood products including pork (n=34), beef (n=34), chicken (n=32), flatfish (n=37), armorclad rockfish (n=36), and sea bream (n=27). The meat (n=100) and seafood (n=100) samples were collected from 9 markets in 5 major Korean cities. Antibiotic substances were identified from the classes of tetracyclines, macrolides, penicillins, aminoglycosides, polyethers, peptides, sulfonamides, quinolones, chlorampenicols, and novobiocins using a microbiological assay, the Charm II test and high performance liquid chromatography (HPLC) with ultra violet (UV) and fluorescence detectors. The results showed that 2 tetracyclines (oxytetracycline and tetracycline) and 3 quinolones (ciprofloxacin, norfloxacin, and enrofloxacin) were detected in 4 samples of flatfish among all 100 seafood samples tested. No antibiotic residues were detected in the 100 livestock product samples tested. The amounts (min-max, mg/kg) of the residual antibiotics were as follows; tetracycline 0.78-0.85, oxytetracycline 0.49-0.74, ciprofloxacin 0.09-0.83, norfloxacin 0.01-0.21, enrofloxacin 0.12-2.98. These data indicate that the total detection rate of antibiotics in livestock and seafood products was approximately 2%.