• 제목/요약/키워드: Ultra Precision Processing

검색결과 94건 처리시간 0.024초

무인화 가공공정 최적화 및 자율대응 기술에 관한 기반연구 (A basic study on Unmanned Machining Process Optimizing and Autonomous Control)

  • 김동훈;송준엽
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.367-372
    • /
    • 2012
  • The biggest factors that lower the machining accuracy are thermal deformation and chatter vibration. In this article, we introduce the study case of technology that can automatically compensate the errors of these factors of a machine during processing on the machine tool's CNC(Computerized Numerical Controller) in real time. This study is related to the detection and compensation of thermal deformation and chatter vibration that can compensate for faster and produce processed goods with more precision by autonomous compensation. In addition, this study is related to the active control of vibration during machining, monitoring of cutting force and auto recognition of machining axes origin. Thus, we attempt to introduce the related contents of the development we have made in this article.

적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror)

  • 김건희;김효식;신현수;원종호;양순철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF

CBN 숫돌을 이용한 연삭에서 공작물의 표면성상 분석 (Analysis on Surface Characteristics of the Workpiece in the Grinding by CBN Wheel)

  • 이영석;곽재섭;하만경;구양;윤문철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1105-1108
    • /
    • 2001
  • In these days, according s the increase of technological development the part demension goes up for ultra-precision. It is grinding behavior that is important processing which directly influences by machining accuracy at product quality with the net shape manufacturing. In this study, by using CBN wheel an analysis carried out for workpiece's profiles and its characteristics by measuring grinding force and surface roughness. Workpiece materials were used STD11, SUS304 and STB2 varing condition of feedrate and depth of cut.

  • PDF

F-Theta Lens 금형코어 형상정도 향상에 관한 연구 (A Study on the Form Accuracy Improvement of Mold Core for F-Theta Lens)

  • 김상석;정상화;김현욱;김혜정;김정호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.777-780
    • /
    • 2005
  • The global consumption of aspheric surfaces will expand rapidly on the Electronics and Optical Components Information and Communications, Aerospace and Defense, and Medical optics markets etc. We must research on market, technology forecast and analysis of aspheric surfaces that is a principle step of ultra precision machine technology with a base one of optical elements. Especially, F-theta lens is one of the important parts in LSU(Laser scanning unit) because it affects on the optical performance of LSU dominantly. The core is most of important to produce plastic F-theta lens by plastic injection molding method, which is necessary to get the ultra-precision aspheric and non-axisymmetric machine processing technology.

  • PDF

공작기계 장시간 가공중 열변형의 CNC 자율보정 기술 (Autonomous Compensation of Thermal Deformation during Long-Time Machining Process)

  • 김동훈;송준엽
    • 한국정밀공학회지
    • /
    • 제31권4호
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.

Laser Interferometer를 이용한 초정밀위치결정 피드백시스템의 컴퓨터 시뮬레이션 및 제어성능 평가 (Computer Simulation and Control performance evaluation for Feedback System of Ultra Precision Positioning by using Laser Interferometer)

  • 김재열;김영석;윤성운;곽이구;한재호;유신
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.68-74
    • /
    • 2001
  • This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed for fine positioning. We make a study of precision apparatus that is used in the various industrial machine. The study was carried out to develope a precision positioning apparatus, consisting of servo motor and piezoelectric actuator. Coarse positioning using lead screw is drived by servo motor. Control system output a signal from laser interferometer to amplifier of servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometer. In this study, design method and control system with ultra precision position apparatus are researched. As the first step, we have estimated for control performance and system stability before an actual apparatus is manufactured by MATLAB with SIMULINK including various functions those are composed of pre-design and system modeling.

  • PDF

미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구 (Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation)

  • 제태진;박상천;이강원;노진석;최두선;황경현
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구 (The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing)

  • 원종구;이은상;이상균
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구 (A study on the fabrication and processing of ultra-precision diamond tools using FIB milling)

  • 위은찬;정성택;김현정;송기형;최영재;이주형;백승엽
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.