• Title/Summary/Keyword: Ultra High Energy Ball Milling

Search Result 10, Processing Time 0.026 seconds

Effect of Initial Silicon Scrap Size on Powder Refining Process During High Energy Ball Milling (HEBM) (폐실리콘의 고에너지 밀링 과정에서 초기 입자 크기가 분말의 미세화에 미치는 효과)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Sung-Shin;Koo, Jar-Myung;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • In this research, the optimal manufacturing conditions of fine Si powders from Si scrap were investigated as a function of different initial powder size using the high-energy ball milling equipment, which produces the fine powder by means of an ultra high-energy within a short duration. The morphological change of the powders according to the milling time was observed by Scanning electron microscopy (SEM). With the increasing milling time, the size of Si powder was decreased. In addition, more energy and stress for milling were required with the decreasing initial powder size. The refinement of Si scrap was rapidly carried out at 10min ball milling time. However, the refined powder started to agglomerate at 30 min milling time, while the powder size became uniform at 60 min milling time.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Polyethylene-Based Dielectric Composites Containing Polyhedral Oligomeric SilSesquioxanes Obtained by Ball Milling

  • Guo, Meng;Frehchette, Michel;David, Eric;Demarquette, Nicole Raymonde
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2015
  • High-energy ball milling was tested as a method for producing Ultra High Molecular Weight Polyethylene (UHMWPE)- based nanodielectrics containing 1 wt% and 5 wt% OctaIsoButylPOSS (OibPOSS). Qualitative and quantitative evaluations were used to explore the compatibility between OibPOSS and PE. Several ball milling variables were optimized in a bid to achieve UHMWPE/OibPOSS nanodielectrics. The morphology, as well as the thermal and the dielectric properties of the samples, were characterized by scanning electron microscopy, thermogravimetric analysis, broadband dielectric spectroscopy, and progressive-stress breakdown tests. The results showed that (i) ball milling was an effective method for producing UHMWPE/OibPOSS dielectric composites, but appeared ineffective in dispersing OibPOSS at the nanoscale, and (ii) the resulting UHMWPE/OibPOSS dielectric composites presented thermal and dielectric properties similar to those of neat UHMWPE.

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC (초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구)

  • Kim, Do-Hyoung;Woo, Yong-Won;Lee, Hyun-Ho;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

Densification of Mo Nanopowders by Ultra High Pressure Compaction (초고압 성형을 통한 Mo 나노 분말의 치밀화)

  • Ahn, Chi Hyeong;Choi, Won June;Park, Chun Woong;Lee, Seung Yeong;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.

Fabrication of Fine-grained Molybdenum Sintered Body via Modified Sintering Process (소결 공정 개선을 통한 미세 결정립 몰리브덴 소결체 제조)

  • Lee, Tae Ho;Kim, Se Hoon;Park, Min Suh;Suk, Myung Jin;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.868-873
    • /
    • 2011
  • In this study, the fabrication of ultra fine grained Mo bulk was conducted. $MoO_3$ nanopowders were prepared by a high energy ball-milling process and then reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The particle size of Mo nanopowder was ~150 nm and grain size was ~40 nm. The two-step process was employed for the sintering of Mo nanopowder to obtain fine grain size. The densification over 90% could be obtained by the two-step sintering with a grain size of less than 660 nm. For higher density, modified two-step sintering was designed. 95% of theoretical density with the grain size of 730 nm was obtained by the modified two-step sintering.