Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.11.868

Fabrication of Fine-grained Molybdenum Sintered Body via Modified Sintering Process  

Lee, Tae Ho (Department of Materials Science and Engineering, Hanyang University)
Kim, Se Hoon (Department of Materials Science and Engineering, Hanyang University)
Park, Min Suh (Department of Materials Science and Engineering, Hanyang University)
Suk, Myung Jin (Department of Materials & Metallurgical Engineering, Kangwon National University)
Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.11, 2011 , pp. 868-873 More about this Journal
Abstract
In this study, the fabrication of ultra fine grained Mo bulk was conducted. $MoO_3$ nanopowders were prepared by a high energy ball-milling process and then reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The particle size of Mo nanopowder was ~150 nm and grain size was ~40 nm. The two-step process was employed for the sintering of Mo nanopowder to obtain fine grain size. The densification over 90% could be obtained by the two-step sintering with a grain size of less than 660 nm. For higher density, modified two-step sintering was designed. 95% of theoretical density with the grain size of 730 nm was obtained by the modified two-step sintering.
Keywords
nanostructured materials; powder processing; grain refinement; image analysis; two-step sintering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Wikipedia, Molybdenum, http://en.wikipedia.org/wiki/ Molybdenum (2011).
2 J. Choi, Development and Production Process of Refractory Metals, p3-4, Korea Advanced Institute of Science and Technology, Daejeon, Korea (1988).
3 Y. M. Kim, E.-P. Kim, S. Lee, and J.-W. Noh, J. Kor. Powder Metall. Inst. 14, 221 (2007).   DOI   ScienceOn
4 M. Katayama and S. Kibe, Int. J. Impact Eng. 26, 357 (2001).   DOI   ScienceOn
5 J. A. Shields Jr. and P. Lipetzky, Molybdenum Applications in the Electronics Market 52, 37 (2000).
6 R. M. German and C. A. Labombard, Int. J. Powder Metall. Powder Technol. 18, 147 (1982).
7 Y. Hiraoka, T. Ogusu, and N. Yoshizawa, J. Alloys Compd. 381, 192 (2004).   DOI   ScienceOn
8 P. E. Zovas and R. M. German, Metal. Trans. A 15A, 1103 (1983).
9 H. Hofmann, M. Grosskopf, M. Hofmann-Amtenbrink, and G. Petzow, Powder Metall. 29, 201 (1986).   DOI
10 S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Kor. J. Met. Mater. 49, 231 (2011)   DOI   ScienceOn
11 I. W. Chen and X. H. Wang, Nature 404, 168 (2000).   DOI   ScienceOn
12 X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, L. T. Li, and I. W. Chen, J. Am. Ceram. Sol. 89, 438 (2006).   DOI   ScienceOn
13 X. H. Wang, P. L. Chen, and I. W. Chen, J. Am. Ceram. Soc. 89, 431 (2006).   DOI   ScienceOn
14 G. K. Williamson and W. H. Hall, Acta Metal. 1, 22 (1953).   DOI   ScienceOn
15 B. D. Cullity, Elements of X-ray Diffration, Addison Wesley, (1978).
16 S. H. Kim, Y. I. Seo, D. G. Kim, M. J. Suk, and .Y. D. Kim, J. Kor. Powder Metall. Inst. 17, 235 (2010).   DOI   ScienceOn
17 S.H. Kim, D.-G. Kim, M.S. Park, Y.I. Seo, and Y.D. Kim, Met. Mater. Int. 17, 63 (2011).   DOI   ScienceOn