• Title/Summary/Keyword: Ultra Capacitor

Search Result 87, Processing Time 0.047 seconds

The Development of the Train Performance Simulation Program for Railway Vehicles equipped with Energy Storage System (에너지 저장장치를 탑재한 철도차량의 소비에너지 시뮬레이션 프로그램 개발)

  • Oh, Yong-Kuk;Lee, Jee-Ho;Kwak, Jae-Ho;Hwang, Hyeon-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2336-2341
    • /
    • 2011
  • The studies on railway vehicles equipped with various energy storage system is proceeded actively. These have a lot of advantages like the maximizing reuse of the regeneration energy, the decrease of peak power in catenary and the reduction of infrastructure costs through catenary-free travelling. This paper is focused on the development of the TPS (Train Performance Simulation) program for railway vehicles equipped with energy storage system. The battery and ultra-capacitor system are modeled using Matlab/Simulink among several energy storage systems. And the feasibility of simulation model is evaluated with the basic power distribution algorithm.

  • PDF

Practical Methodology of the Integrated Design and Power Control Unit for SHEV with Multiple Power Sources

  • Lee, Seongjun;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.353-360
    • /
    • 2016
  • Series hybrid electric vehicles (SHEVs) having multiple power sources such as an engine- generator (EnGen), a battery, and an ultra-capacitor require a power control unit with high power density and reliable control operation. However, manufacturing using separate individual power converters has the disadvantage of low power density and requires a large number of power and signal cable wires. It is also difficult to implement the optimal power distribution and fault management algorithm because of the communication delay between the units. In order to address these concerns, this approach presents a design methodology and a power control algorithm of an integrated power converter for the SHEVs powered by multiple power sources. In this work, the design methodology of the integrated power control unit (IPCU) is firstly elaborately described, and then efficient and reliable power distribution algorithms are proposed. The design works are verified with product-level and vehicle-level performance experiments on a 10-ton SHEV.

The design of capacitor-based self-powered artificial neural networks devices (커패시터 기반 자가발전 인공 신경망 디바이스 설계)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

A Study on the Improving Effectiveness of Shipboard Electric Propulsion System with Ultra-capacitor Energy Storage Devices (울트라 캐패시터 에너지 저장장치를 적용한 함정 전기추진 시스템의 효용성 증대 연구)

  • Kim, So-Yeon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • Recently, integrated electric propulsion system has been vigorously adopted into naval vessels. To enhance effectiveness and efficiency of power management in these propulsion systems, this paper investigates necessity of energy storage devices and their operation strategies. By introducing the energy storage devices, engine can operate at higher efficiency point and accordingly costs for fuel and maintenance are significantly reduced. In addition, transient performance can also be improved with support of the devices and it leads to stable operation of shipboard power bus. To validate the proposal of this paper, computer simulation has been conducted with real load data of existing electric propulsion system.

Analysis on Proecwss Characteristics of 2'nd Silicidation Formation Process at MOS Structure (MOS 구조에서 실리사이드 형성단계의 공정특성 분석)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.130-131
    • /
    • 2005
  • In the era of submicron devices, super ultra thin gate oxide characteristics are required. Titanium silicide process has studied gate oxide reliability and dielectric strength characteristics as the composition of gate electrode. In this study the author observed process characteristics on MOS structure. In view point of the process characteristics of MOS capacitor, the oxygen & Ti, Si2 was analyzed by SIMS analysis on before and after annealing with 1,2 step silicidation, the Ti contents[Count/sec]of $9.5{\times}1018$ & $6.5{\times}1018$ on before and after 2'nd anneal. The oxygen contents[Count/sec] of $4.3{\times}104$ & $3.65{\times}104$, the Si contents[Count/sec] of $4.2{\times}104$ & $3.7{\times}104$ on before and after 2'nd anneal. The rms value[A] was 4.98, & 4.03 on before and after 2'nd anneal.

  • PDF

Gate dielectric SiO2 film deposition on poly Silicon using UV-excited ozone gas without heating substrate.

  • Kameda, Naoto;Nishiguchi, Tetsuya;Morikawa, Yoshiki;Kekura, Mitsuru;Nonaka, Hidehiko;Ichimura, Shingo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.915-918
    • /
    • 2007
  • We have grown $SiO_2$ film on a polycrystalline Si layer using excited ozone gas, which is produced by ultra-violet light irradiation to ozone gas, without heating substrate. The obtained $SiO_2$ film shows dielectric properties comparable to the device quality films measured at the MIS capacitor configuration.

  • PDF

Reignition system for synthetic short-circuit test (합성단락시험용 재점호장치)

  • Park, Seung-Jae;Kim, Maeng-Hyun;Kang, Young-Sig;Shin, Young-June;Koh, Heui-Sek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1856-1858
    • /
    • 2000
  • This paper describes the principles of reignition system which has newly been developed and used as KERI's high power testing facilities. Synthetic short-circuit testing method is generally adopted to perform the short-circuit test of the ultra high-voltage circuit breakers, which consists of two separated sources such as the current source from short-circuit generator and the voltage source from charged energy in capacitor. And, in case of synthetic short-circuit test, it will be necessary to use the reignition system in order to extending the arcing time of the circuit breaker and provide the arc energy equivalent to the direct testing method.

  • PDF

A Study on the Dielectric Constant Measurement of PBDG Organic Ultra Thin Film (PBDG 유기초박막의 유전율 측정에 관한 연구)

  • Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.150-152
    • /
    • 2002
  • This paper, experiment manufactures device of Metal/Poly-$\gamma-Benzyl\;_D-Glutamate$ Organic Films/Metal structure using PBDG and I-V properties and C-F properties. The I-V characteristic is measured that approve voltage from 0 to +2[V] of device and the distance between electrode is larger, could know that small current flow and thin film could know that had insulation property. C-F characteristic has each other affinity between the polarization amount and frequency. Dielectric constant of MIM device could know by dipole that is voluntary polarization of LB film that polarization is happened. The capacitor properties of a thin film is better as the distance between electrodes is smaller.

  • PDF

A Low-Voltage Low-Power Delta-Sigma Modulator for Cardiac Pacemaker Applications (심장박동 조절장치를 위한 저전압 저전력 델타 시그마 모듈레이터)

  • Chae, Young-Cheol;Lee, Jeong-Whan;Lee, In-Hee;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • A low voltage, low power delta-sigma modulator is proposed for cardiac pacemaker applications. A cascade of delta-sigma modulator stages that employ a feedforward topology has been used to implement a high-resolution oversampling ADC under the low supply. An inverter-based switched-capacitor circuit technique is used for low-voltage operation and ultra-low power consumption. An experimental prototype of the proposed circuit has been implemented in a $0.35-{\mu}m$ CMOS process, and it achieves 61-dB SNDR, 63-dB SNR, and 65-dB DR for a 120-Hz signal bandwidth at 7.6-kHz sampling frequency. The power consumption is only 280 nW at 1-V power supply.

Transparent Capacitor of the $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMNO)-Bi Nanostructured Thin Films grown at Room Temperature

  • Song, Hyeon-A;Na, Sin-Hye;Jeong, Hyeon-Jun;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • BMNO dielectric materials with a pyrochlore structure have been chosen and they have quite high dielectric constants about 210 for the bulk material. In the case of thin films, 200-nm-thick BMNO films deposited at room temperature showed a low leakage current density of about $10^{-8}\;A/cm^2$ at 3 V and a dielectric constant of about 45 at 100 kHz. Because high dielectric constant BMNO thin films kept an amorphous phase at a high temperature above $900^{\circ}C$. High dielectric constant BMNO thin films grown at room temperature have many applications for flexible electronic devices. However, because the dielectric constant of the BMNO films deposited at room temperature is still low, percolative BMNO films (i.e., those were grown in a pure argon atmosphere) sandwiched between ultra-thin BMNO films grown in an oxygen and argon mixture have greater dielectric constants than standard BMNO films. However, they still showed a leakage problem at a high voltage application. Accordingly, a new nano-structure that uses BMNO was required to construct the films with a dielectric constant higher than that of its bulk material. The fundamental reason that the BMNO-Bi nano-composite films grown by RF-Sputtering deposition had a dielectric constant higher than that of the bulk material was addressed in the present study. Also we used the graphene as bottom electrode instead of the Cu bottom electrode. At first, we got the high leakage current density value relatively. but through this experiment, we could get improved leakage current density value.

  • PDF