• Title/Summary/Keyword: Ultimate-flow

Search Result 163, Processing Time 0.02 seconds

A Study on the Effects of Turbulence to Ultimate Loads Acting on the Blade of Wind Turbine (풍력발전시스템의 블레이드에 작용하는 극한하중에 대한 난류의 영향 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • This study has analysed the ultimate loads acting on a wind turbine which is operating in a high turbulent flow condition because the ultimate loads are critical factors on the safe design of wind turbine. Since wind flow on the most parts of Korean mountainous are strongly influenced by complex configurations of the topography, turbulence intensity on somewhere is so stronger than an international design standard. For this reason, the characteristics of turbulent wind data collected from actual sites were analyzed and used for the ultimate load evaluation of the wind turbine. With the 270 design load cases on the international standards, the differences of ultimate loads on the wind turbine operating in the standard or high turbulent wind condition are calculated and compared for the an enhanced knowledge of the safe design basis. As are result, it is revealed the specific ultimate loads are strongly affected by the high turbulent wind conditions, thus the characteristics of turbulent flow must be considered during the design of wind turbine.

An Estimation of Constraint Factor on the ${\delta}_t$ Relationship (J-적분과 균열선단개구변위에 관한 구속계수 m의 평가)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • This paper investigates the relationship between J-integral and crack tip opening displacement, ${\delta}_t$ using Gordens results of numerical analysis. Estimation were carried out for several strength levels such as ultimate, flow, yield, ultimate-flow, flow-yield stress to determine the influence of strain hardening and the ratio of crack length to width on the $J-{\delta}_t$ relationship. It was found that for SE(B) specimens, the $J-{\delta}_t$ relationship can be applied to relate J to ${\delta}_t$ as follows $J=m_j{\times}{\sigma}_i{\times}{\delta}_t$ where $m_j=1.27773+0.8307({\alpha}/W)$, ${\sigma}_i:{\sigma}_U$, ${\sigma}_{U-F}={\frac{1}{2}} ({\sigma}_U+{\sigma}_F$), ${\sigma}_F$, ${\sigma}_F}$ $Y=({\sigma}_F+{\sigma}_Y)$, ${\sigma}_Y$

  • PDF

A Study on the Lateral Flow of the Silts which is Polluted with a Garbage Leachate to the Dyes (쓰레기 침출수와 염료로 오염된 실트지반의 측방유동에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum;Ahn, Ki-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1157-1166
    • /
    • 2008
  • Critical surcharge value of silt ground polluted with garbage leachate to the dyes $q_{cr}=3.73c_u$ and ultimate bearing capacity value $q_{ult}=8.60c_u$. Lateral flow pressure at polluted silt ground was about $P_{max}$/3 and depth of maximum lateral flow pressure was found at that of H/3 of soft layer thickness(H). Expression of polluted silt ground of fracture baseline at stability control charge by Matsuo Kawamura is $S_v=3.56\exp\{0.51(Y_m/S_v)\}$.

  • PDF

Efficient finite element analysis for the ultimate strength estimation of cylindrical structure (원통구조의 최종강도 추정을 위한 효율적인 유한요소해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.28-37
    • /
    • 1996
  • A finite element analysis code considering elasto-plastic large deformation is developed to predict the ultimate strength of circular cylinders subject to external pressure loading by introducing a new type of axisymmetric shell element which can take into account the plasticity effect due to the circumferential bending while drastically saving the computing efforts compared with the tree dimensional finite element analysis. It is observed that analsis results of present approach show good agreement with the test results of previous works. Parametric study gives the effects of initial imperfections on ultimate strength ahd this information is recommended to be used to modify the actual test data to the ones which can be used more reasonably in making empirical design formulas.

  • PDF

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

Dynamic Deformation Behavior of Metal Matrix Composites Under Impact Loading (충격하중을 받는 금속복합재료의 동적변형거동에 관한 연구)

  • Kim, Moon-Saeng;Lee, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1772-1782
    • /
    • 1993
  • The characteristics of metal matrix composite under dynamic tension at high strain rates up to the order of $10^3/sec$ is studied by using newly developed apparatus. The composite material processed in this research is aluminum-alumina metal matrix composites, arid fabricated by compocasting with the fiber volume fraction from 5 to 20%. The whisker and matrix material used in this paper were ${\delta}-Al_2O_3$ and Al-6061, respectively. The mechanical tests performed in this research are low and high strain rate tensile test. At low strain-rate tensile test, the modulus of elasticity and the ultimate tensile strength of the composites were improved about 77 pct. and 55 pct., respectively comparing with the unreinforced materials. At strain-rate from $10^{-3}\;to\;10^3/s$, the effect of strain-rate on the modulus, ultimate strength, flow stress is determined. Also the effect of strain rate on the modulus, ultimate tensile strength, flow stress and elongation to failures were investigated.

Ultimate Strength Analysis of Space Steel Frames Considering Spread of Plasticity (점진적 소성화를 고려한 공간 강뼈대구조의 극한강도해석)

  • Kim, Sung Bo;Han, Jae Young;Park, Soon Cheol;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.299-311
    • /
    • 2003
  • This paper presents a finite element procedure to estimate the ultimate strength of space frames considering spread of plasticity. The improved displacement field is introduced based on the inclusion of second-order terms of finite rotations. All the non-linear terms due to bending moment, torsional moment, and axial force are precisely considered. The concept of plastic hinges is introduced and the incremental load/displacement method is applied for elasto-plastic analyses. The initial yield surface is defined based on the residual stress, and the full plastification surface is considered under the combined action of axial forces, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for the ultimate strength of space frames are compared with available solutions and experimental results.

Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity (소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석)

  • 한재영;김성보
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

A Study on the Ultimate Load Assessment and the Performance Prediction of a Wind Turbine (풍력터빈 출력예측 및 극한하중평가에 관한 연구)

  • Kim, Bum-Suk;Eum, Hark-Jin;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.326-333
    • /
    • 2009
  • Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Bladed. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

Ultimate Load Assessment and Performance Prediction of a Horizontal Axis Wind Turbine (수평축 풍력터빈 출력예측 및 극한하중평가)

  • Kim, Bum-Suk;Kim, Mann-Eung;Eum, Hark-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2880-2885
    • /
    • 2008
  • Design lifttime of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Blade. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

  • PDF