• Title/Summary/Keyword: Ultimate strain

Search Result 597, Processing Time 0.029 seconds

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling (이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.295-300
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

Effect of Aspect Ratio on Direct Tensile Response of Strain Hardening Cement Composites with PET and PVA Fiber (PET 및 PVA섬유를 사용한 변형경화형 시멘트 복합체의 직접인장거동에서 섬유 형상비의 영향)

  • Jeon, Esther;Yun, Hyun-Do;Park, Wan-Shin;Kim, Yong-Chul;Kim, Yun-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.913-916
    • /
    • 2008
  • Direct tensile response of strain hardening cement composites(SHCC) depends primarily on the material's tensile response, which is a water cement ratio, direct function of fiber and matrix characteristics, the bond between them, and the fiber volume fraction. This paper discusses effect of aspect ratio of the direct tensile response of SHCC with PET and PVA fibers. The main variables considered include the aspect ratio of PET fibers(Aspect ratio, ${\ell}/d_f$ : 150, 300, 600). For the same mixture proportion, PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600(Aspect ratio 300, 600) showed better overall behavior(Pseudo strain-hardening, Multiple cracking) than specimens with PET1.5+PVA0.5-150(Aspect ratio 150). Tensile strain of PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600 at ultimate tensile stress were 0.5, 2.0% respectively.

  • PDF

Evaluation for mechanical properties of high strength concrete by stressed test and stressed residual strength test - part 2 strain properties - (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성 평가 - 제2보 변형특성을 중심으로 -)

  • Kim, Young-Sun;Lee, Tae-Gyu;Lee, Dae-Hui;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.761-764
    • /
    • 2008
  • The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the strain properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. thermal strain of concrete at high temperature was affected by the preload as well as the compressive strength.

  • PDF

Confined concrete model of circular, elliptical and octagonal CFST short columns

  • Patel, Vipulkumar I.;Uy, Brian;Prajwal, K.A.;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.497-520
    • /
    • 2016
  • The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.

Characterization of Crazing Behavior in Polystyrene (Polystyrene 의 Crazing 거동 특성)

  • Jeon, Dae-Jin;Kim, Seok-Ho;Kim, Wan-Young
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • Tensile tests of two types of injection-molded polystyrene(PS) samples have been carried out over a wide range of temperature and strain rates in order to characterize their crazing behaviors. Mechanical properties were affected by the formation of crazes as well as test variables. Below the brittle-ductile transition temperature, the tensile stress and the ultimate elongation increased with the molecular weight, strain rate, and with decreasing temperature while the number and average length of crazes also increase. The crazing stress increased with molecular weight, strain rate, and with decreasing temperature. However, the dependence was small compared to the tensile stress. The gap between crazing stress and tensile stress which represents time fur craze formation and growth increased with molecular weight, strain rate, and with decreasing temperature. Crazing was activated near the ${\beta}$-relaxation temperature; crazing stress abruptly decreased at this temperature. During the tensile test, the craze density changed exponentially with the applied stress. At the initial stage, crazes formed slowly. Once a certain number of craze formed, however, the craze density increased rapidly. Craze nucleation and growth occur simultaneously.

Performance Experiments and Analysis of Nonlinear Behavior for HDRB using in Seismic Isolation (면진용 고감쇠 적층고무베어링의 성능 특성 실험 및 비선형 거동해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.73-86
    • /
    • 1998
  • The purpose of this paper is to evaluate the shear stiffness, hysteretic behavior, and ultimate behavior of HDRB(High Damping Rubber Bearing), which will be included in the seismic isolation design guideline as requirements. To do this, two 1/8 scaled HDRB are designed, fabricated, and tested to show the mechanical characteristics. The shear stiffness obtained from the proposed equation of the shear stiffness shows a good agreement with those of the experiments. For analysis of the hysteretic behavior of HDRB using the modified rate model, the parameter equations are obtained from the experiments. Using the obtained parameter equations for the modified rate model, the seismic response analyses are carried out for 1-D system. The results of analysis well follow the hysteretic behavior of HDRB obtained from the experiments. To evaluate the ultimate behavior of HDRB used in this paper, the analyses are carried out using the modified macro model, which can consider the large shear deflection. The critical shear strain(CSS) is defined to express the maximum allowable shear strain and vertical load. From the analyses, the CSS, showing the instability, decreases significantly as increased the vertical loads. The CSS is not appeared for the design vertical load in the used HDRB. In analysis using about 5 times of design vertical load, the HDRB start to show the instability transient and for about 7 times, the CSS is about 350%.

  • PDF

Experiment and Strength Analysis of High-Strength RC Columns (고강도 철근 콘크리트 기둥의 실험 및 강도해석)

  • Son, Hyeok-Soo;Kim, Jun-Beom;Lee, Jae-Hoon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.149-160
    • /
    • 1999
  • This paper is a part of a research aimed at the verification of basic design rules of high-strength concrete columns. A total of 32 column specimens were tested to investigate structural behavior and strength of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength. steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356 kg/$cm^2$ to 951 kg/$cm^2$ and the longitudinal steel ratios were between 1.13 % and 5.51 %. Test results of column sectional strength are compared with the results of analyses by ACI rectangular stress block, trapezoidal stress block, and modified rectangular stress block. Axial force-moment-curvature analysis is also performed for predicting axial load-moment strength and compared with the test results. The ACI rectangular stress block provides over-estimated column strengths for the lightly reinforced high strength column specimens. The calculated strengths by moment-curvature analyses are highly affected by $k_3$ values of the concrete stress-strain curve. Observed failure mode. concrete ultimate strain, and stress block parameters are discussed.

THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX (Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향)

  • Lee Kyung-Hee;Cho Young-Gon;Lee Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.290-299
    • /
    • 2006
  • Objectives: The purpose of this study is to evaluate the effect of ethylene glycol analogs on modulus of elasticity and ultimate tensile strength of moist, demineralized dentin matrix. Methods: Dentin disks 0.5 mrn thick were prepared from mid-coronal dentin of extracted. unerupted, human third molars. 'I' beam and hour-glass shaped specimens were prepared from the disks, the ends protected with nail varnish and the central regions completely demineralized in 0.5M EDTA for 5 days. Ultimate tensile stress (UTS) and low strain modulus of elasticity (E) were determined with specimens immersed for 60 min in distilled water $(H_{2}O)$, ethylene glycol $(HO-CH_{2}-CH_{2}-OH)$, 2-methoxyethanol $(H_{3}CO-CH_{2}-CH_{2}-OH)$, and 1,2-dimethoxyethane $(H_{3}CO-CH_{2}-CH_{3}-OCH_{3})$ prior to testing in those same media. Modulus of elasticity was measured on the same specimens in a repeated measures experimental design. The results were analyzed with a one-way ANOVA on ranks, followed by Dunn's test at ${\alpha}\;=\;0.05$. Regression analysis examined the relationship between UTS or E and hoy's solubility parameter for hydrogen bonding $({\delta}_{h})$ of each solvent. Results: The UTS of demineralized dentin in water, ethylene glycol, 2-methoxyethanol, and 1,2-dimethoxyethane was 24 (3), 30 (5), 37 (6), and 45 (6) MPa, ${\times}$ (SD) N = 10. Low strain E for the same media were 16 (13), 23 (14), 52 (24), and 62 (22) MPa. Regression analysis of UTS vs ${\delta}_{h}$ revealed a significant $(p\;<\;0.0001,\;r\;=\;-0.99,\;R^{2}\;=\;0.98)$ inverse, exponential relationship. A similar inverse relationship was obtained between low strain E vs ${\delta}_{h}\;(p\;<\;0.0005,\;r\;=\;-0.93,\;R^{2}\;=\;0.86)$. Significance: The tensile properties of demineralized dentin are dependent upon the hydrogen bonding ability of polar solvents $({\delta}_{h})$. Solvents with low ${\delta}_{h}$ values may permit new interpeptide H-bonding in collagen that increases its tensile properties. Solvents with high ${\delta}_{h}$ values prevent the development of these new interpeptide H-bonds.

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF