Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.295

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling  

Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 295-300 More about this Journal
Abstract
Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.
Keywords
differential speed rolling; Cu alloy; shear strain; microstructure; mechanical property;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Q. Cui and K. Ohori, Mater. Sci. Technol., 16, 1095 (2000).   DOI
2 T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech., 111, 113 (2001).   DOI
3 C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Int. 12, 225 (2006).   DOI
4 K. -H. Kim and D. N. Lee, Acta Mater., 49, 2583 (2001).   DOI
5 T. Sakai, S. Hamada, and Y. Saito, Scr. Mater., 44, 2569 (2001).   DOI
6 S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, Korean J. Met. Mater., 47, 121 (2009).
7 S. H. Lee, D. J. Yoon, K. Euh, S. H. Kim, and S. Z. Han, Korean J. Met. Mater., 48, 77 (2010).   DOI
8 S. H. Lee, J. Y. Lim, H. Utsunomiya, K. Euh, and S. Z. Han, Korean J. Met. Mater., 48, 942 (2010).   DOI
9 S. H. Lee, J. Y. Lim, D. J. Yoon, K. Euh, and S. Z. Han, Korean J. Mater. Res., 21, 15 (2011).   DOI
10 S. H. Lee, Korean J. Mater. Res., 22, 581 (2012).   DOI
11 S. H. Lee, S. R. Lee, and H. Utsunomiya, Korean J. Mater. Res., 52, 637 (2013).
12 S. H. Lee and S. Z. Han, Korean J. Mater. Res., 26, 8 (2016).   DOI
13 S. H. Lee and S. Z. Han, Korean J. Mater. Res., 28, 113 (2018).   DOI