• Title/Summary/Keyword: Ultimate pile capacity

Search Result 159, Processing Time 0.026 seconds

The behavior characteristic of the laterally loaded pile installed in multi-layered soil (지반층 변화에 따른 수평하중을 받는 말뚝의 거동 특성)

  • Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.533-538
    • /
    • 2009
  • Ultimate lateral loaded pile capacity is influenced by soil conditions. Methods of calculating ultimate lateral loaded pile capacity in homogeneous soil were suggested by a lot of previous researchers.(Broms 1964, Petrasovits & Award 1972, Prasad & Chari 1999) There is only few homogeneous soil in actual condition, however, it could be not conviction that the methods from previous researchers are correct in multi-layered soil. In this study, ultimate lateral capacities were estimated from artificial multi-layered soils and were measured from lateral load test that were composed by various soil conditions. The influence of layered soil conditions were confirmed by comparing with two results.

  • PDF

말뚝기초의 연적 방향 극한하중

  • 김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.209-236
    • /
    • 2002
  • Ultimate pile capacity - Point resistance - Frictional resistance - Determination of point and frictional resistances from field tests - Summary of recommendations from design Group effects Settlement analysis.

  • PDF

Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.27-36
    • /
    • 2017
  • Gravel compaction pile method has been widely used to improve the soft ground on the land or sea as one of the soft ground improvement technique. The ultimate bearing capacity of the ground reinforced by gravel compaction piles is affected by the soil strength, the replacement ratio of pile, construction conditions, and so on, and various prediction equations have been proposed to predict this. However, the prediction of the ultimate bearing capacity using the existing models has a very large error and variation, and it is not suitable for practical design. In this study, multiple regression analysis was performed using field loading test results to predict the ultimate bearing capacity of ground reinforced by gravel compaction pile, and the most efficient input variables are selected through evaluation of error by leave one out cross validation, and a multiple regression equation for the prediction of ultimate bearing capacity was proposed. In addition, the prediction error was evaluated by applying artificial neural network using the selected input variables, and the results were compared with those of the existing model.

Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data (SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발)

  • Bong, Tae-Ho;Kim, Byoung-Il;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.37-47
    • /
    • 2018
  • In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.

Changes in Ultimate Bearing Capacity according to the Position of the End of the Drilled Shaft (현장타설말뚝 선단부의 위치에 따른 극한지지력 변화)

  • Choi, Dong-Lo;Park, Kyeong-Ho;Kim, Chae-Min;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.49-59
    • /
    • 2022
  • This study was conducted to find out the rational and appropriate design of drilled shaft. In other words, in order to find out the variation of ultimate bearing capacity according to the change in the support layer of drilled shaft, back analysis was performed using the bi-directional pile load test performed on drilled shaft. Based on the back-analyzed data, numerical analysis of the pile head load was performed, and the ultimate bearing capacity in the target ground was evaluated using the Davisson method. As a result of numerical analysis of one case where the end of the pile was seated on the top of the weathered rock layer, and three cases where the end of the pile was embedded at different locations in the weathered soil, it was found that sufficient ultimate bearing capacity was secured in all cases. In other words, the case where the end of the pile is seated on the top of the weathered rock layer, not embedded the weathered rock, and the drilled shaft embedded into the weathered soil also have sufficient bearing capacity, so it can be used as a support layer for drilled shaft.

A Study of Improvement Pile friction in Marine Clay using Electrokinetics Treatment (전기동역학을 이용한 해성 점토 지반내의 말뚝 마찰지지력 향상에 관한 연구)

  • Lee, Kwang-Yeol;Gu, Tae-Gon;Tjandra, Daniel;Hyun, Jae-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.211-218
    • /
    • 2004
  • The objective of this study is to enhance the ultimate bearing capacity of piles embedded in marine clay by electrokinetic(EK). The focus of improvement is at interlace between soil and pile. A series laboratory test was performed in EK cell. In each of test, the pile in the centre as anode is surrounded by cathode and it was installed in the vicinity of pile with triangular layout. The pile was made by stainless and embedded with 30cm of depth. Afterward, the DC voltage was applied to electrode over period of time. It caused flowing water from anode to cathode, thus the soil in the center of box has higher bearing capacity value than in the side of box has. It is shown by increasing of un-drained shear strength(Cu) near the pile and also ultimate bearing capacity of pile increase after EK treatment. In the future work, the continuous of this study is finding the effective DC voltage and makes EK treatment more applicable in the field.

  • PDF

Behavior of Laterally Cyclic Loaded Piles Driven into Sand (모래지반에서 반복수평하중을 받는 항타말뚝의 거동)

  • Paik, Kyu-Ho;Park, Won-Woo;Kim, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF