• Title/Summary/Keyword: Ultimate Tensile Strength

Search Result 494, Processing Time 0.026 seconds

THE EFFECT OF HYDROGEN AND OXYGEN CONTENTS ON HYDRIDE REORIENTATIONS OF ZIRCONIUM ALLOY CLADDING TUBES

  • CHA, HYUN-JIN;JANG, KI-NAM;AN, JI-HYEONG;KIM, KYU-TAE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.746-755
    • /
    • 2015
  • To investigate the effect of hydrogen and oxygen contents on hydride reorientations during cool-down processes, zirconium-niobium cladding tube specimens were hydrogen-charged before some specimens were oxidized, resulting in 250 ppm and 500 ppm hydrogen-charged specimens containing no oxide and an oxide thickness of $0.38{\mu}m$ at each surface. The nonoxidized and oxidized hydrogen-charged specimens were heated up to $400^{\circ}C$ and then cooled down to room temperature at cooling rates of $0.3^{\circ}C/min$ and $8.0^{\circ}C/min$ under a tensile hoop stress of 150 MPa. The lower hydrogen contents and the slower cooling rate generated a larger fraction of radial hydrides, a longer radial hydride length, and a lower ultimate tensile strength and plastic elongation. In addition, the oxidized specimens generated a smaller fraction of radial hydrides and a lower ultimate tensile strength and plastic elongation than the nonoxidized specimens. This may be due to: a solubility difference between room temperature and $400^{\circ}C$; an oxygen-induced increase in hydrogen solubility and radial hydride nucleation energy; high temperature residence time during the cool-down; or undissolved circumferential hydrides at $400^{\circ}C$.

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr 계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Huh, Hoon;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.353-354
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$ (bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74Gpa at strain rate of $10^2/s$ and minimum strength was found to be 1.6GPa at $10^{-1}/s$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}/s$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

  • PDF

Strength Characteristics of An Aluminum 2024-T3 in Short-time High Temperature Environment (AL 2024-T3의 단시간 고온 강도 특성)

  • 이열화;김재영;김헌주;박경민;김종환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.255-263
    • /
    • 2001
  • The main purpose of this paper is to investigate strength characteristics of Aluminum 2024-T3 in high temperature environment. Tensile test of Aluminum 2024-T3 has been carried out in high temperature environment. The stress-strain relations are investigated with temperature and Young's modulus, yield strength and ultimate strength are deduced from the test results. The modulus and strength of the test are compared with those of MIL HANDBOOK and tips on structural design in high temperature environment are suggested.

  • PDF

Using AP2RC & P1RB micro-silica gels to improve concrete strength and study of resulting contamination

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Najaf, Erfan
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.195-206
    • /
    • 2016
  • Today, application of additives to replace cement in order to improve concrete mixes is widely promoted. Micro-silica is among the best pozzolanic additives which can desirably contribute to the concrete characteristics provided it is used properly. In this paper, the effects of AP2RC and P1RB micro-silica gels on strength characteristics of normal concrete are investigated. Obtained results indicated that the application of these additives not only provided proper workability during construction, but also led to increased tensile, compressive and flexural strength values for the concrete during early ages as well as ultimate ones with the resulting reduction in the porosity lowering permeability of the micro-silica concrete. Furthermore, evaluation of microbial contamination of the mentioned gels showed the resultant contamination level to be within the permitted range.

Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks (터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정)

  • Im, H.D.;Park, C.K.;Lee, K.;Rhim, S.H.;Kim, C.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF